Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic stem cells reveal oncogene's secret growth formula

30.04.2010
A comprehensive new gene expression study in embryonic stem cells has uncovered a transcription control mechanism that is not only more pervasive than once thought but is also heavily regulated by the cancer-causing gene c-Myc.

In research published in the April 30th edition of Cell, a team of Whitehead Institute researchers describes a pausing step in the transcription process that serves to regulate expression of as many as 80% of the genes in mammalian cells.

Scientists have long known that DNA-binding transcription factors recruit the RNA polymerase Pol II (which prompts copying of DNA into mRNA protein codes) to promoters in order to kick off the transcription process. Now researchers in the lab of Whitehead Member Richard Young have found that additional factors recruited to the promoters serve to stop transcription in its tracks shortly after it's begun.

"It's like the engine's running, but the transmission is not engaged on that transcription apparatus," says Young, who is also a professor of biology at MIT. "You need something to engage that transmission."

It turns out that for a surprisingly large number of genes in embryonic stem cells, that "something" is the transcription factor c-Myc. This so-called pause release role for c-Myc is significant, as many of c-Myc's targets are genes in highly proliferative cells. Over-expression of c-Myc is a hallmark of a number of tumors, and it now appears that c-Myc's ability to release transcriptional pausing is linked with the hyper-proliferation that is characteristic of cancer cells.

"Our findings provide the molecular basis for loss of proliferation control in some cancers," says Peter Rahl, a postdoctoral researcher in Young's lab and first author of the Cell paper.

Armed with this new understanding of c-Myc's role in controlling proliferation genes, Young and his colleagues have embarked on a search for drugs that could interrupt c-Myc's pause-release activity in tumors where it's over-expressed.

"Clearly, cancer cells are able to exploit mechanisms that normally operate in embryonic stem cells," says Young, "so I expect further understanding of embryonic stem cell control mechanisms will give us additional insights into human disease mechanisms."

This research was supported by the National Institutes of Health (NIH) and National Cancer Institute (NCI).

Written by Nicole Giese

Richard Young's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.

Full Citation:
"c-Myc regulates transcriptional pause release"
Cell, April 30, 2010.
Peter B. Rahl (1), Charles Y. Lin (1,2), Amy C. Seila (3,4), Ryan A. Flynn (3), Scott McCuine (1), Christopher B. Burge (2), Phillip A. Sharp (2,3), Richard A. Young (1,2)
1. Whitehead Institute for Biomedical Research, Cambridge, MA 02142
2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
3. Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
4. Present Address: Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142

Nicole Giese | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>