Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic stem cells reveal oncogene's secret growth formula

30.04.2010
A comprehensive new gene expression study in embryonic stem cells has uncovered a transcription control mechanism that is not only more pervasive than once thought but is also heavily regulated by the cancer-causing gene c-Myc.

In research published in the April 30th edition of Cell, a team of Whitehead Institute researchers describes a pausing step in the transcription process that serves to regulate expression of as many as 80% of the genes in mammalian cells.

Scientists have long known that DNA-binding transcription factors recruit the RNA polymerase Pol II (which prompts copying of DNA into mRNA protein codes) to promoters in order to kick off the transcription process. Now researchers in the lab of Whitehead Member Richard Young have found that additional factors recruited to the promoters serve to stop transcription in its tracks shortly after it's begun.

"It's like the engine's running, but the transmission is not engaged on that transcription apparatus," says Young, who is also a professor of biology at MIT. "You need something to engage that transmission."

It turns out that for a surprisingly large number of genes in embryonic stem cells, that "something" is the transcription factor c-Myc. This so-called pause release role for c-Myc is significant, as many of c-Myc's targets are genes in highly proliferative cells. Over-expression of c-Myc is a hallmark of a number of tumors, and it now appears that c-Myc's ability to release transcriptional pausing is linked with the hyper-proliferation that is characteristic of cancer cells.

"Our findings provide the molecular basis for loss of proliferation control in some cancers," says Peter Rahl, a postdoctoral researcher in Young's lab and first author of the Cell paper.

Armed with this new understanding of c-Myc's role in controlling proliferation genes, Young and his colleagues have embarked on a search for drugs that could interrupt c-Myc's pause-release activity in tumors where it's over-expressed.

"Clearly, cancer cells are able to exploit mechanisms that normally operate in embryonic stem cells," says Young, "so I expect further understanding of embryonic stem cell control mechanisms will give us additional insights into human disease mechanisms."

This research was supported by the National Institutes of Health (NIH) and National Cancer Institute (NCI).

Written by Nicole Giese

Richard Young's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.

Full Citation:
"c-Myc regulates transcriptional pause release"
Cell, April 30, 2010.
Peter B. Rahl (1), Charles Y. Lin (1,2), Amy C. Seila (3,4), Ryan A. Flynn (3), Scott McCuine (1), Christopher B. Burge (2), Phillip A. Sharp (2,3), Richard A. Young (1,2)
1. Whitehead Institute for Biomedical Research, Cambridge, MA 02142
2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
3. Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
4. Present Address: Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142

Nicole Giese | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Researchers reveal new details on aged brain, Alzheimer's and dementia
21.11.2017 | Allen Institute

nachricht Nanoparticles help with malaria diagnosis – new rapid test in development
21.11.2017 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>