Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic stem cell culturing grows from art to science

15.11.2010
Growing human embryonic stem cells in the lab is no small feat. Culturing the finicky, shape-shifting cells is labor intensive and, in some ways, more art than exact science.

Now, however, a team of researchers at the University of Wisconsin-Madison reports the development of a fully defined culture system that promises a more uniform and, for cells destined for therapy, safer product.

Writing this week (Nov. 14) in the journal Nature Methods, a team led by Laura Kiessling, a UW-Madison professor of chemistry, unveiled an inexpensive system that takes much of the guess work out of culturing the all-purpose cells.

"It's a technology that anyone can use," says Kiessling. "It's very simple."

At present, human embryonic stem cells are cultured mostly for use in research settings. And while culture systems have improved over time, scientists still use surfaces that contain mouse cells or mouse proteins to grow batches of human cells, whether embryonic or induced stem cells. Doing so increases the chances of contamination by animal pathogens such as viruses, a serious concern for cells that might be used in therapy.

The new culture system utilizes a synthetic, chemically made substrate of protein fragments, peptides, which have an affinity for binding with stem cells. Used in combination with a defined growth medium, the system devised by the Wisconsin team can culture cells in their undifferentiated states for up to three months and possibly longer. The system, according to the new report, also works for induced pluripotent stem cells, the adult cells genetically reprogrammed to behave like embryonic stem cells.

Cells maintained in the system, Kiessling notes, were subsequently tested to see if they could differentiate into desired cell types, and performed just as well as cells grown in less defined, commercially available cell culture systems.

Kiessling notes that the first clinical trials involving human embryonic stem cells are underway and that as more tests in human patients are initiated, confidence in the safety of the cells will be paramount.

"The disadvantages of the culture systems commonly used now are that they are undefined – you don't really know what your cells are in contact with – and there is no uniformity, which means there is batch-to-batch variability," Kiessling explains. "The system we've developed is fully defined and inexpensive."

The work by Kiessling's group was supported by the U.S. National Institutes of Health and the University of Wisconsin Materials Research Science and Engineering Center.

-- Terry Devitt, 608-262-8282, tredevitt@wisc.edu

Laura Kiessling | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>