Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic stem cell culturing grows from art to science

15.11.2010
Growing human embryonic stem cells in the lab is no small feat. Culturing the finicky, shape-shifting cells is labor intensive and, in some ways, more art than exact science.

Now, however, a team of researchers at the University of Wisconsin-Madison reports the development of a fully defined culture system that promises a more uniform and, for cells destined for therapy, safer product.

Writing this week (Nov. 14) in the journal Nature Methods, a team led by Laura Kiessling, a UW-Madison professor of chemistry, unveiled an inexpensive system that takes much of the guess work out of culturing the all-purpose cells.

"It's a technology that anyone can use," says Kiessling. "It's very simple."

At present, human embryonic stem cells are cultured mostly for use in research settings. And while culture systems have improved over time, scientists still use surfaces that contain mouse cells or mouse proteins to grow batches of human cells, whether embryonic or induced stem cells. Doing so increases the chances of contamination by animal pathogens such as viruses, a serious concern for cells that might be used in therapy.

The new culture system utilizes a synthetic, chemically made substrate of protein fragments, peptides, which have an affinity for binding with stem cells. Used in combination with a defined growth medium, the system devised by the Wisconsin team can culture cells in their undifferentiated states for up to three months and possibly longer. The system, according to the new report, also works for induced pluripotent stem cells, the adult cells genetically reprogrammed to behave like embryonic stem cells.

Cells maintained in the system, Kiessling notes, were subsequently tested to see if they could differentiate into desired cell types, and performed just as well as cells grown in less defined, commercially available cell culture systems.

Kiessling notes that the first clinical trials involving human embryonic stem cells are underway and that as more tests in human patients are initiated, confidence in the safety of the cells will be paramount.

"The disadvantages of the culture systems commonly used now are that they are undefined – you don't really know what your cells are in contact with – and there is no uniformity, which means there is batch-to-batch variability," Kiessling explains. "The system we've developed is fully defined and inexpensive."

The work by Kiessling's group was supported by the U.S. National Institutes of Health and the University of Wisconsin Materials Research Science and Engineering Center.

-- Terry Devitt, 608-262-8282, tredevitt@wisc.edu

Laura Kiessling | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>