Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embracing our differences

10.01.2011
The first Japanese human genome sequence suggests that genetics researchers may be overlooking rare but potentially important variations

While it may have been a momentous occasion in scientific history, the assembly of the first human genome sequence in 2003 was only a first step toward understanding the extent and biological importance of human genetic variation.

In fact, this ‘reference genome’—also known as NCBI36—was not derived from a single individual, but is instead a patchwork constructed from several anonymous donors. In subsequent years, research groups have taken advantage of increasingly powerful and affordable gene sequencing technology to construct full genomes from several individuals of European, African and Asian ancestry. However, such analyses still face major obstacles, even with the benefit of contemporary technology.

“Although ‘next generation’ sequencers can now sequence a human genome within a couple of weeks, sequencing errors are problematic because they are relatively frequent,” explains Tatsuhiko Tsunoda of the RIKEN Center for Genomic Medicine in Yokohama. “Sophisticated methodologies are necessary for detecting genetic variations, including single-nucleotide, copy number and structural variations.” His concern about these issues is particularly strong given his group’s involvement in the International Cancer Genome Consortium (ICGC), an organization focused on understanding how specific genomic alterations might potentially contribute to the tumor formation and progression.

Similar, but different

In partnership with RIKEN colleague Akihiro Fujimoto, Tsunoda developed more sophisticated methods for sequence data analysis. As a test of the effectiveness of their approach, they have now assembled the first complete genome sequence from an individual of Japanese ancestry[1].

Beyond its status as a landmark in genomics research, this study has also revealed a surprising number of potentially medically relevant sequence and structural variations (Fig. 2), both large and small, which have not been identified in previously assembled human sequences. In fact, their analysis of individual NA18943 revealed a striking amount of variability relative to NCBI36. “We found a roughly 0.1% difference between our assembled DNA sequences compared to the reference genome, with approximately three million base-pairs of novel sequences, as well as 3.13 million single-nucleotide variations (SNVs),” says Tsunoda.

Novel SNVs pose a particular challenge to identify, as it is often difficult to be certain whether a putative base change represents a true difference from the reference sequence or is merely the result of an error in the sequencing process. To maximize their accuracy, the researchers carefully compared three different approaches for deciding which base actually occurs at a given genomic position, developing a method that ultimately allowed them to achieve a low rate of false-positive SNV identification.

Notably, a large percentage of the novel SNVs detected in this study represented variations to genes that either disrupt protein production (nonsense mutations) or markedly alter the encoded protein sequence (nonsynonymous SNVs). The researchers hypothesize that such variations are likely to be rare within populations because of their potential contribution to human disease and as such would be strongly selected against over the course of evolution.

Tsunoda and colleagues observed a similar pattern when they compared NA18943 to six other previously characterized individual genomes. Of the nonsense SNVs identified within this collected dataset, 63% were ‘singletons’, or variants that occurred only once across all seven genome sequences. Further, the total collection of nonsynonymous SNVs contained significantly more singletons than were found among the set of non-protein-altering, synonymous SNVs.

Their analysis also revealed numerous regions where the NA18943 genome had been subject to insertions or deletions, more than 350 of which were predicted to markedly alter or disrupt the coding sequence of a gene. Notably, a significant percentage of these were detected within genes involved in olfactory or chemical stimulus perceptions, both of which are known to vary extensively between individuals.

Cause for a closer look

The researchers used a variety of established molecular biology techniques to verify the quality of these data from NA18943. Their findings collectively confirm that the genome of any given individual is likely to exhibit large numbers of rare, but functionally meaningful, variations relative to the general population or even individuals who are closely related from an evolutionary perspective. “We will have to sequence many more individuals within our population as well as across other populations around the world in order to obtain a clearer, more complete picture of the human genome,” says Tsunoda.

These findings could also have important ramifications for the conduct of studies into the genetic roots of human disease. Many such investigations are based on so-called ‘genome-wide association studies’ (GWAS), which use known SNVs as starting points for mapping sites in the genome that contribute to the pathology of complex conditions such as diabetes, rheumatoid arthritis or various forms of cancer. However, by over-emphasizing known SNVs, which are by definition more common in the general population, such studies may ignore many rare variants that offer better insight into disease pathology or are more prevalent among select populations, such as individuals of Japanese ancestry.

Tsunoda hopes this work will help steer future population-scale genetic studies as well as the group’s ongoing tumor analysis efforts for the ICGC. “Our findings promote the potential of high-accuracy personal genome sequencing,” says Tsunoda. “We have found that the variations that are functionally relevant to diseases may include lower frequency alleles that are not so common in the population as the SNVs that people are currently using for GWAS, and we may have to sequence individuals' genomes to look at such variations.”

About the Researcher: Tatsuhiko Tsunoda

Tatsuhiko Tsunoda was born in Tokyo, Japan, in 1967. He graduated with a degree in physics from the Faculty of Science at The University of Tokyo in 1989. He spent two years as a postgraduate studying elementary particle physics, and in 1995 obtained his PhD from The University of Tokyo’s Department of Engineering. After researching computational linguistics as an assistant professor of Kyoto University until 1997, he started research on human genome sequence analysis as a research associate of Institute of Medical Science at The University of Tokyo. He subsequently worked on cancer gene expression as an assistant professor. In 2000, he joined the RIKEN Center for Genomic Medicine as head of the Laboratory for Medical Informatics. He holds PhDs in medicine and engineering, and his research focuses on statistical genetic analysis of human genome variations and gene expression analysis for medical research, including methodologies for personalized medicine.

Journal information
[1] Fujimoto, A., Nakagawa, H., Hosono, N., Nakano, K., Abe, T., Boroevich, K.A., Nagasaki, M., Yamaguchi, R., Shibuya, T., Kubo, M., Miyano, S., Nakamura, Y. & Tsunoda, T. Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nature Genetics 42, 931–936 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>