Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elusive long-fingered frog found after 62 years

28.03.2012
Scientists on expedition in the Burundi rainforest discover a single specimen, nearest relatives live 1,400 miles away
Herpetologists from the California Academy of Sciences and University of Texas at El Paso discovered a single specimen of the Bururi long-fingered frog (Cardioglossa cyaneospila) during a research expedition to Burundi in December 2011. The frog was last seen by scientists in 1949 and was feared to be extinct after decades of turmoil in the tiny East African nation.

For biologists studying the evolution and distribution of life in Africa, Burundi sits at an intriguing geographic crossroads since it borders the vast Congo River Basin, the Great Rift Valley, and the world’s second largest freshwater lake, Lake Tanganyika. Many of the species in its high-elevation forests may be closely related to plants and animals found in Cameroon’s mountains, suggesting that at some point in the past, a cooler climate may have allowed the forests to become contiguous.
Previous knowledge of Burundi’s wildlife came from scientific surveys conducted in the mid-20th century, when the nation was under Belgian administration. But its history since then has been one of political unrest, population growth, and habitat loss. Today, approximately 10 million people occupy an area the size of Massachusetts, giving Burundi one of the highest population densities in Africa.

Academy curator David Blackburn joined his colleague Eli Greenbaum, professor at the University of Texas at El Paso, on the 2011 expedition with the goal of finding Cardioglossa cyaneospila, as well as other amphibians and reptiles first described 60 years ago. To their pleasant surprise, the habitats of the Bururi Forest Reserve in the southwest part of the country were still relatively intact, with populations of rare forest birds and chimpanzees present.
With little knowledge to go on except a hunch that C. cyaneospila would make a call like its possible close relatives in Cameroon, Blackburn finally found a single specimen on his fifth night in the forest.

“I thought I heard the call and walked toward it, then waited,” said Blackburn. “In a tremendous stroke of luck, I casually moved aside some grass and the frog was just sitting there on a log. I heard multiple calls over the next few nights, indicating a healthy population of the species, but I was only able to find this one specimen.”
The Bururi long-fingered frog is about 1.5 inches long, with a black and bluish-gray coloration. The males are notable for one extra-long finger on each foot, analogous to the “ring finger” in humans, whose purpose is unknown. Its closest relatives live in the mountains of Cameroon, more than 1,400 miles away.

The lone specimen collected, which now resides in the Academy’s herpetology collection, can be used for DNA studies to determine how long the Cardioglossa species from Burundi and Cameroon have been genetically isolated from one another. The results will shed light on Africa’s historical climate conditions, a topic that has far-reaching implications for understanding the evolution of life in the continent that gave rise to our own species.

In addition to locating the Bururi long-fingered frog, Blackburn and Greenbaum also documented dozens of other amphibians in Burundi, many of which had never before been recorded in the country. The team also discovered some species that may be new to science.

“Eventually, we will use the data from our expedition to update the IUCN conservation assessment for amphibians of Burundi,” said Greenbaum. “Because Burundi is poorly explored, we’ve probably doubled the number of amphibian species known from the country. Once we demonstrate that Burundi contains rare and endemic species, we can work with the local community to make a strong case for preserving their remaining natural habitats.”

About the California Academy of Sciences

The Academy is an international center for scientific education and research and is at the forefront of efforts to understand and protect the diversity of Earth’s living things. The Academy has a staff of over 50 professional educators and Ph.D.-level scientists, supported by more than 100 Research and Field Associates and over 300 Fellows. It conducts research in 12 scientific fields: anthropology, aquatic biology, botany, comparative genomics, entomology, geology, herpetology, ichthyology, invertebrate zoology, mammalogy, microbiology, and ornithology. Visit research.calacademy.org.

About the University of Texas at El Paso
The University of Texas at El Paso (UTEP) is a dynamic urban university that serves more than 22,600 students enrolled in 75 bachelor’s, 78 master’s, and 19 doctoral programs. UTEP is recognized nationally for its leadership role in changing the face of U.S. higher education. Its students, who are 78% Hispanic, mirror the population of this region and, increasingly, that of Texas and the United States. UTEP’s success in serving as a catalyst for economic development and quality of life in this region has also placed it in the national spotlight as a model 21st century U.S. research university.

Andrew Ng | EurekAlert!
Further information:
http://www.utep.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>