Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elusive gene discovered that makes platelets grey

26.07.2011
Researchers have identified an elusive gene responsible for Grey Platelet Syndrome, an extremely rare blood disorder, which is hoped will make it easier to diagnose

Researchers have identified an elusive gene responsible for Grey Platelet Syndrome, an extremely rare blood disorder in which only about 50 known cases have been reported. As a result, it is hoped that future cases will be easier to diagnose with a DNA test.

The findings were made following a collaborative study by Professor Willem Ouwehand and Dr Cornelis Albers, who are both based at the Wellcome Trust Sanger Institute and the University of Cambridge, and Dr Paquita Nurden, from the Rare Platelet Disorders laboratory, based in Bordeaux, who have described their study.

Platelets are the second most abundant cell in the blood. Their main task is to survey the blood vessel wall for damage and to orchestrate its repair where required. On the flip side, platelets also play a "darker" role after vessel wall damage and cause blood clots that may lead to heart attacks or stroke.

Some people are born with platelets that do not function well and these rare conditions are thought to be inherited. Grey Platelet Syndrome poses a risk of bleeds, some of which can be severe and life threatening, e.g. if they occur in the brain. Grey Platelet Syndrome was first identified in the 1970s and is named for the greyish appearance of these platelets when viewed with a microscope.

Identifying the cause of increased bleeding in young patients has been a painstaking process. An important step in translating research findings in human genetics in improvements of patient care has focused around the need to develop simpler and rapid DNA-based diagnostic test. To achieve this, researchers needed to discover the gene responsible for the rare platelet bleeding disorders.

In the past it was a major challenge to discover which genes caused rare disorders because DNA samples from numerous large families affected by the same disorder had to be identified and genetically analysed to pinpoint the region harbouring the causative gene.

To achieve their latest findings, researchers used a simpler approach and deciphered about 40 million letters of genetic code covering the entire coding fraction of the genome of four non-related French patients.

They identified the gene NBEAL2 as not functioning well in Grey Platelet Syndrome, a member of a family of genes that all contain a unique domain, called the BEACH domain. The team showed that protein encoded by this gene is altered at a different position in the four non-related cases and the patients affected by the disorder have inherited two non-functioning copies of the gene, one from father and mother each.

"It is really great to see how the use of modern genomics technologies is going to be of direct benefit for patient care. It is exciting that we have shown that the genetic basis of a rare bleeding disorder can be discovered with relative ease", said Professor Willem Ouwehand, who heads a NHS Blood and Transplant research team on platelet biology at both the Wellcome Trust Sanger Institute and the University of Cambridge. "This study is one such example and it gives us confidence to achieve the same for a large number of other rare inherited platelet bleeding disorders. It is now important that we use this discovery to improve patient care in the NHS and beyond."

The team's identification of the NBEAL2 gene was confirmed by functional studies in zebrafish. Fish also have platelets named thrombocytes, and switching off the NBEAL2 gene in fish caused a complete absence of these cells which resulted in nearly half of the fish suffering spontaneous bleeds similar to patients with the disorder.

It is hoped that this gene identification will make it simpler to diagnose future cases of Grey Platelet Syndrome with a simple DNA test. This new test is now being developed with researchers at the NHS Blood and Transplant Centre at the Addenbrooke's Biomedical campus in Cambridge as part of the international ThromboGenomics initiative.

The scientists also observed that other members from the same family of BEACH proteins are implicated in other rare inherited disorders. Their findings showed that LYST protein did not function well in Chediak-Higashi syndrome, another rare but severe disorder paralysing the immune system but also causing a mild platelet bleeding disorder. As a result, a picture is emerging that BEACH proteins are essential in the way granules in blood cells and brain cells are formed or retained showing that in platelets the BEACH proteins are essential for both alpha and dense granules.

"Our discovery that another member of the family of BEACH proteins is underlying a rare but severe granule disorder in platelets firmly nails down the important role of this class of proteins in granule biology," said Cornelis Albers, a British Heart Foundation research fellow at the Sanger Institute and the University of Cambridge. "The reasons why the platelets of patients with Grey Platelet Syndrome are grey is because they lack alpha granules. The alpha granules carry the cargo of proteins that induce vessel wall repair and also form the platelet plug.

"A better understanding of how these granules are formed and how their timely release by the platelet is coordinated at the molecular level may one day underpin the development of a new class of safer anti-platelet drugs for use in patients with heart attacks and stroke. It has been a fascinating journey to identify a new and important pathway by combining the rapid advances in sequencing technology with computational analysis."

The French collaboration leader, Dr Paquita Nurden, set up the Network for Rare Platelet Disorders at the Laboratoire d'Hématologie, Hopital Xavier Arnozan close to Bordeaux. Their team made the Heruclian effort to find the French families affected by this rare disorder.

"We have worked for years to identify the families across France that suffer from rare platelet disorders and my group of scientists have used powerful microscopes to determine what was wrong with the platelets from patients with Grey Platelet Syndrome. Researchers across the world discovered in the 1980s that something was wrong with the alpha granules because they were lacking in most of the cases," said Dr Nurden, an international expert in platelet biology. "The gene, however, remained elusive for another 30 years, and it is great how our joint working has discovered the causative gene very quickly."

Notes to Editors
Publication details
Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome.

Albers CA, Cvejic A, Favier R, Bouwmans EE, Alessi MC, Bertone P, Jordan G, Kettleborough RN, Kiddle G, Kostadima M, Read RJ, Sipos B, Sivapalaratnam S, Smethurst PA, Stephens J, Voss K, Nurden A, Rendon A, Nurden P and Ouwehand WH

Nature genetics 2011

PUBMED: 21765411; DOI: 10.1038/ng.885

Funding
The research team in Cambridge is supported by the British Heart Foundation, the European Commission, the National Institute for Health Research, NHS Blood and Transplant and the Wellcome Trust.
Participating Centres
Bordeaux is the coordinating centre for French National Reference Network for inherited platelet diseases, identified by the French Health Ministry. Through this network it became possible to precise the epidemiology of these diseases and identify new groups of patients with similarities to increase the chance to define the mutations responsible for the disease.
NHS Blood and Transplant (NHSBT)
Professor Ouwehand is also a consultant Haematologist for NHS Blood and Transplant (NHSBT). NHSBT collects blood and platelets from non-remunerated volunteer donors. Every day about 10,000 units of blood are needed by the NHS and 1100 platelet concentrates. For the latter about 600 donors attend a special clinic at which platelets are harvested from the blood of the donor by a process called apheresis.
The Wellcome Trust Sanger Institute
The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease.
Websites
http://www.sanger.ac.uk/
The Wellcome Trust
The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.
Website
http://www.wellcome.ac.uk

Don Powell | EurekAlert!
Further information:
http://www.sanger.ac.uk

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>