Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrons set free

04.04.2011
Free-floating electrons on top of liquid helium yield insights into their transport behavior

The multibillion dollar computer industry hinges on the ability to efficiently pass an electric current through a material. However, in any electronic device such as a computer transistor, the influence of the materials atom’s inevitably masks the interactions between the electrons.

Using a custom-designed system, a research team from the RIKEN Advanced Science Institute, Wako, in collaboration with colleagues from the University of Konstanz, Germany, has completed the first study of the transport of single floating electrons free of external influences[1].

Trapping electrons outside of matter and keeping them in order is difficult, but liquid helium is ideally suited to the task. Electrostatic charges in the liquid can attract electrons towards its surface but, owing to a lack of energy, the electrons cannot penetrate the surface and enter the liquid. Instead, caught between these competing influences, the electrons hover above the liquid helium, forming a two-dimensional electron system. “This is a unique system for studying the fundamental properties of electrons, as the electrostatic interactions between them are effectively unscreened,” says team member David Rees.

To measure the transport properties of this liquid-like system of electrons, the researchers fabricated a channel on the surface of a silicon chip that they filled with liquid helium. In one location, they physically narrowed the width of this channel and applied an electric field across the constriction, which provided further control over the effective channel width using electrostatic forces (Fig. 1).

When the channel width was sufficiently narrow, only one electron could pass through it at a time—the others were blocked by electrostatic repulsion. When the researchers slightly widened the channel by lowering the electric field across it, two electrons could pass through at the same time. Further widening would allow more electrons to pass through.

In addition to confirming the importance of electrostatic repulsions, these experiments open the door to further fundamental studies of electron behavior. If cooled to temperatures below one degree above absolute zero, the randomly floating electrons would arrange into a periodic and ordered array. This could provide the first opportunity to investigate the dynamics of a crystalline electron system, rather than a disordered liquid passing through a narrow constriction.

This model system of strongly interacting electrons may have other roles to play. According to Rees and team leader Kimitoshi Kono, if applied to other systems where the interactions between particles are strong, these findings could be used to understand the transport of particles such as ions in biological organisms.

The corresponding author for this highlight is based at the Low Temperature Physics Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Rees, D.G., Kuroda, I., Marrache-Kikuchi, C.A., Höfer, M., Leiderer, P. & Kono, K. Point-contact transport properties of strongly correlated electrons on liquid helium. Physical Review Letters 106, 026803 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6565
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>