Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrodes Reveal Tumors

09.08.2010
Direct potentiometric determination of the sialic acid concentration on cell surfaces—a new technique for tumor diagnosis?

For proper cancer treatment, it is critically important to know the extent of the disease. Any operation should completely remove all affected tissue. In order to catch stray cells that may have already moved on into healthy tissue it is necessary to take out healthy adjacent tissue and sometimes other affected organs and lymph nodes.

Japanese researchers working with Yuji Miyahara have now developed a technique that allows for the quick and easy differentiation between diseased and healthy tissue. As the scientists report in the journal Angewandte Chemie, the method is based on the direct potentiometric measurement of a tumor marker on cell surfaces.

The cells in our bodies have chains made of special sugar components on their surfaces. Sialic acid is one of these sugar building blocks and is often found at the ends of the sugar chains. These sugar chains can serve as a signal for the detection of certain pathological processes. For example, certain types of cancer involve an overproduction of sialic acid in the tumor cells, which causes these molecules to build up in the cell membrane. This increase in membrane-bound sialic acid can be detected in blood serum and is occasionally used as a test for the early detection of cancer.

The research team from the University of Tokyo and National Institute for Materials Science (Japan) has now developed an interesting new method for the detection of elevated sialic acid levels that can quickly, easily, and directly determine whether a tissue sample contains malignant mutated cells, and how far the metastasis of a tumor has progressed. For their potentiometric process, the researchers use the fact that sialic acid specifically binds to a compound named phenylboronic acid (PBA). Related sugar molecules do not bind to PBA. The scientists coated gold electrodes with a layer of PBA. If the coated electrodes come into contact with a sample that contains cells with sialic acid, the cells bind to the PBA through their sialic acid molecules. Cells that contain many sialic acid molecules bind more strongly to the electrode. This changes the electrical properties of the electrode. Changes in surface potential are then monitored and used to quantify the sialic acid concentration in the sample.

To carry out the test, a sample of the suspicious tissue must simply be extracted and suspended. The number of cells contained in a defined volume of the suspension is then determined, and the suspension is poured over the electrode. No other sample preparation is required. Carried out in parallel to established histological tests, the potentiometric examination could rapidly deliver supplementary information about the malignancy of tumors and the degree of metastasis.

Author: Yuji Miyahara, University of Tokyo (Japan), http://park.itc.u-tokyo.ac.jp/CNBI/e/member/mem_miyahara.html

Title: Assessment of Tumor Metastasis by the Direct Determination of Cell-Membrane Sialic Acid Expression

Angewandte Chemie International Edition 2010, 49, No. 32, 5494–5497, Permalink to the article: http://dx.doi.org/10.1002/anie.201001220

Yuji Miyahara | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://park.itc.u-tokyo.ac.jp/CNBI/e/member/mem_miyahara.html

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>