Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrodes Reveal Tumors

09.08.2010
Direct potentiometric determination of the sialic acid concentration on cell surfaces—a new technique for tumor diagnosis?

For proper cancer treatment, it is critically important to know the extent of the disease. Any operation should completely remove all affected tissue. In order to catch stray cells that may have already moved on into healthy tissue it is necessary to take out healthy adjacent tissue and sometimes other affected organs and lymph nodes.

Japanese researchers working with Yuji Miyahara have now developed a technique that allows for the quick and easy differentiation between diseased and healthy tissue. As the scientists report in the journal Angewandte Chemie, the method is based on the direct potentiometric measurement of a tumor marker on cell surfaces.

The cells in our bodies have chains made of special sugar components on their surfaces. Sialic acid is one of these sugar building blocks and is often found at the ends of the sugar chains. These sugar chains can serve as a signal for the detection of certain pathological processes. For example, certain types of cancer involve an overproduction of sialic acid in the tumor cells, which causes these molecules to build up in the cell membrane. This increase in membrane-bound sialic acid can be detected in blood serum and is occasionally used as a test for the early detection of cancer.

The research team from the University of Tokyo and National Institute for Materials Science (Japan) has now developed an interesting new method for the detection of elevated sialic acid levels that can quickly, easily, and directly determine whether a tissue sample contains malignant mutated cells, and how far the metastasis of a tumor has progressed. For their potentiometric process, the researchers use the fact that sialic acid specifically binds to a compound named phenylboronic acid (PBA). Related sugar molecules do not bind to PBA. The scientists coated gold electrodes with a layer of PBA. If the coated electrodes come into contact with a sample that contains cells with sialic acid, the cells bind to the PBA through their sialic acid molecules. Cells that contain many sialic acid molecules bind more strongly to the electrode. This changes the electrical properties of the electrode. Changes in surface potential are then monitored and used to quantify the sialic acid concentration in the sample.

To carry out the test, a sample of the suspicious tissue must simply be extracted and suspended. The number of cells contained in a defined volume of the suspension is then determined, and the suspension is poured over the electrode. No other sample preparation is required. Carried out in parallel to established histological tests, the potentiometric examination could rapidly deliver supplementary information about the malignancy of tumors and the degree of metastasis.

Author: Yuji Miyahara, University of Tokyo (Japan), http://park.itc.u-tokyo.ac.jp/CNBI/e/member/mem_miyahara.html

Title: Assessment of Tumor Metastasis by the Direct Determination of Cell-Membrane Sialic Acid Expression

Angewandte Chemie International Edition 2010, 49, No. 32, 5494–5497, Permalink to the article: http://dx.doi.org/10.1002/anie.201001220

Yuji Miyahara | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://park.itc.u-tokyo.ac.jp/CNBI/e/member/mem_miyahara.html

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>