Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electrodes Reveal Tumors

Direct potentiometric determination of the sialic acid concentration on cell surfaces—a new technique for tumor diagnosis?

For proper cancer treatment, it is critically important to know the extent of the disease. Any operation should completely remove all affected tissue. In order to catch stray cells that may have already moved on into healthy tissue it is necessary to take out healthy adjacent tissue and sometimes other affected organs and lymph nodes.

Japanese researchers working with Yuji Miyahara have now developed a technique that allows for the quick and easy differentiation between diseased and healthy tissue. As the scientists report in the journal Angewandte Chemie, the method is based on the direct potentiometric measurement of a tumor marker on cell surfaces.

The cells in our bodies have chains made of special sugar components on their surfaces. Sialic acid is one of these sugar building blocks and is often found at the ends of the sugar chains. These sugar chains can serve as a signal for the detection of certain pathological processes. For example, certain types of cancer involve an overproduction of sialic acid in the tumor cells, which causes these molecules to build up in the cell membrane. This increase in membrane-bound sialic acid can be detected in blood serum and is occasionally used as a test for the early detection of cancer.

The research team from the University of Tokyo and National Institute for Materials Science (Japan) has now developed an interesting new method for the detection of elevated sialic acid levels that can quickly, easily, and directly determine whether a tissue sample contains malignant mutated cells, and how far the metastasis of a tumor has progressed. For their potentiometric process, the researchers use the fact that sialic acid specifically binds to a compound named phenylboronic acid (PBA). Related sugar molecules do not bind to PBA. The scientists coated gold electrodes with a layer of PBA. If the coated electrodes come into contact with a sample that contains cells with sialic acid, the cells bind to the PBA through their sialic acid molecules. Cells that contain many sialic acid molecules bind more strongly to the electrode. This changes the electrical properties of the electrode. Changes in surface potential are then monitored and used to quantify the sialic acid concentration in the sample.

To carry out the test, a sample of the suspicious tissue must simply be extracted and suspended. The number of cells contained in a defined volume of the suspension is then determined, and the suspension is poured over the electrode. No other sample preparation is required. Carried out in parallel to established histological tests, the potentiometric examination could rapidly deliver supplementary information about the malignancy of tumors and the degree of metastasis.

Author: Yuji Miyahara, University of Tokyo (Japan),

Title: Assessment of Tumor Metastasis by the Direct Determination of Cell-Membrane Sialic Acid Expression

Angewandte Chemie International Edition 2010, 49, No. 32, 5494–5497, Permalink to the article:

Yuji Miyahara | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>