Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New electrically-conductive polymer nanoparticles can generate heat to kill colorectal cancer cells

21.11.2012
Researchers at Wake Forest Baptist Medical Center have modified electrically-conductive polymers, commonly used in solar energy applications, to develop revolutionary polymer nanoparticles (PNs) for a medical application. When the nanoparticles are exposed to infrared light, they generate heat that can be used to kill colorectal cancer cells.

The study was directed by Assistant Professor of Plastic and Reconstructive Surgery, Nicole H. Levi-Polyachenko, Ph.D., and done in collaboration with colleagues at the Center for Nanotechnology and Molecular Materials at Wake Forest University. This study was recently published online, ahead of print, in the journal, Macromolecular Bioscience (DOI: 10.1002/mabi.201200241).

Levi-Polyachenko and her team discovered a novel formulation that gives the polymers two important capabilities for medical applications: the polymers can be made into nanoparticles that are easily dispersed in water and generate a lot of heat when exposed to infrared light.

Results of this study showed that when colorectal cancer cells incubated with the PNs were exposed to five minutes of infrared light, the treatment killed up to 95 percent of cells. "The results of this study demonstrate how new medical advancements are being developed from materials science research," said Levi-Polyachenko.

The team made polymer nanoparticles and showed that they could undergo repeated cycles of heating and cooling without affecting their heating ability. This offers advantages over metal nanoparticles, which can melt during photothermal treatments, leading to a loss of heating efficiency. This also allows for subsequent treatments to target cells that are resistant to heat-induced killing.

A challenge with other electrically-conductive polymers that have recently been explored for photothermal therapy is that these other polymers absorb across a wide range of infrared light. Christopher M. MacNeill, Ph.D., post-doctoral researcher at Wake Forest and first author on the paper, noted that, "we have specifically used electrically-conductive polymers designed to absorb a very narrow region of infrared light, and have also developed small, 50-65nm, polymer nanoparticles in order to optimize both biological transport as well as heat transfer." For example, 50nm is about 2000 times smaller than a human hair.

In addition, the new PNs are organic and did not show any evidence of toxicity, alleviating concerns about the effect of nanoparticles that may potentially linger in the body.

"There is a lot more research that needs to be done so that these new nanoparticles can be used safely in patients," Levi-Polyachenko cautioned, "but the field of electrically-conductive polymers is broad and offers many opportunities to develop safe, organic nanoparticles for generating heat locally in a tissue. We are very enthusiastic about future medical applications using these new nanoparticles, including an alternative approach for treating colorectal cancer."

The study was funded by the Department of Plastic and Reconstructive Surgery at Wake Forest Baptist Medical Center.

Paula Faria | EurekAlert!
Further information:
http://www.wakehealth.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>