Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New electrically-conductive polymer nanoparticles can generate heat to kill colorectal cancer cells

Researchers at Wake Forest Baptist Medical Center have modified electrically-conductive polymers, commonly used in solar energy applications, to develop revolutionary polymer nanoparticles (PNs) for a medical application. When the nanoparticles are exposed to infrared light, they generate heat that can be used to kill colorectal cancer cells.

The study was directed by Assistant Professor of Plastic and Reconstructive Surgery, Nicole H. Levi-Polyachenko, Ph.D., and done in collaboration with colleagues at the Center for Nanotechnology and Molecular Materials at Wake Forest University. This study was recently published online, ahead of print, in the journal, Macromolecular Bioscience (DOI: 10.1002/mabi.201200241).

Levi-Polyachenko and her team discovered a novel formulation that gives the polymers two important capabilities for medical applications: the polymers can be made into nanoparticles that are easily dispersed in water and generate a lot of heat when exposed to infrared light.

Results of this study showed that when colorectal cancer cells incubated with the PNs were exposed to five minutes of infrared light, the treatment killed up to 95 percent of cells. "The results of this study demonstrate how new medical advancements are being developed from materials science research," said Levi-Polyachenko.

The team made polymer nanoparticles and showed that they could undergo repeated cycles of heating and cooling without affecting their heating ability. This offers advantages over metal nanoparticles, which can melt during photothermal treatments, leading to a loss of heating efficiency. This also allows for subsequent treatments to target cells that are resistant to heat-induced killing.

A challenge with other electrically-conductive polymers that have recently been explored for photothermal therapy is that these other polymers absorb across a wide range of infrared light. Christopher M. MacNeill, Ph.D., post-doctoral researcher at Wake Forest and first author on the paper, noted that, "we have specifically used electrically-conductive polymers designed to absorb a very narrow region of infrared light, and have also developed small, 50-65nm, polymer nanoparticles in order to optimize both biological transport as well as heat transfer." For example, 50nm is about 2000 times smaller than a human hair.

In addition, the new PNs are organic and did not show any evidence of toxicity, alleviating concerns about the effect of nanoparticles that may potentially linger in the body.

"There is a lot more research that needs to be done so that these new nanoparticles can be used safely in patients," Levi-Polyachenko cautioned, "but the field of electrically-conductive polymers is broad and offers many opportunities to develop safe, organic nanoparticles for generating heat locally in a tissue. We are very enthusiastic about future medical applications using these new nanoparticles, including an alternative approach for treating colorectal cancer."

The study was funded by the Department of Plastic and Reconstructive Surgery at Wake Forest Baptist Medical Center.

Paula Faria | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>