Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel electric signals in plants

10.03.2009
Using ion-selective micro-electrodes electrical signals in plants moving from leaf to leaf could be measured. The speed of the signals spreading as voltage changes over cell membranes ranged from 5 to 10 cm per minute.

The scientists discovered this new kind of electrical signal transmission system by applying a novel method: Filamentary electrodes were inserted through open stomata directly into the inner leaf tissue and then placed onto the cell walls (see picture). Stomata are microscopically small openings in the leaf surface which plants facilitate regulating evaporation and gas exchange.

The scientists found out that the new electrical signal they called "system potential" was induced and even modulated by wounding. If a plant leaf is wounded, the signal strength can be different and can be measured over long distances in unwounded leaves, depending on the kind and concentration of added cations (e.g. calcium, potassium, or magnesium).

It is not the transport of ions across cell membranes that causes the observed changes in voltage transmitted from leaf to shoot and then to the next leaf, but the activation of so-called proton pumps. "This is the reason why the "system potential" we measured cannot at all be compared to the classic action potential as present in nerves of animals and also in plants", says Hubert Felle from Gießen University.

Action potentials follow all-or-none characteristics: they are activated if a certain stimulus threshold is reached and then spread constantly. The "system potential", however, can carry different information at the same time: The strength of the inducing stimulus (wound signal) can influence the amplitude of the systemic signal as well as the effect of different ions. "We may be on the trail of an important signal transmission system that is induced by insect herbivory. Within minutes the whole plant is alerted and the plant's defense against its enemy is activated", says Axel Mithöfer from the Max Planck Institute for Chemical Ecology in Jena.

The novel "system potential" was detected in five different plant species, among them agricultural crops like tobacco (Nicotiana tabacum), maize (Zea mays), barley (Hordeum vulgare), and field bean (Vicia faba).

Original Publication:

M. R. Zimmermann, H. Maischak, A. Mithöfer, W. Boland, H. H. Felle:
System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding.

Plant Physiology 149, 1593-1600 (2009)

Hubert H. Felle | EurekAlert!
Further information:
http://ww.ice.mpg.de

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>