Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel electric signals in plants

10.03.2009
Using ion-selective micro-electrodes electrical signals in plants moving from leaf to leaf could be measured. The speed of the signals spreading as voltage changes over cell membranes ranged from 5 to 10 cm per minute.

The scientists discovered this new kind of electrical signal transmission system by applying a novel method: Filamentary electrodes were inserted through open stomata directly into the inner leaf tissue and then placed onto the cell walls (see picture). Stomata are microscopically small openings in the leaf surface which plants facilitate regulating evaporation and gas exchange.

The scientists found out that the new electrical signal they called "system potential" was induced and even modulated by wounding. If a plant leaf is wounded, the signal strength can be different and can be measured over long distances in unwounded leaves, depending on the kind and concentration of added cations (e.g. calcium, potassium, or magnesium).

It is not the transport of ions across cell membranes that causes the observed changes in voltage transmitted from leaf to shoot and then to the next leaf, but the activation of so-called proton pumps. "This is the reason why the "system potential" we measured cannot at all be compared to the classic action potential as present in nerves of animals and also in plants", says Hubert Felle from Gießen University.

Action potentials follow all-or-none characteristics: they are activated if a certain stimulus threshold is reached and then spread constantly. The "system potential", however, can carry different information at the same time: The strength of the inducing stimulus (wound signal) can influence the amplitude of the systemic signal as well as the effect of different ions. "We may be on the trail of an important signal transmission system that is induced by insect herbivory. Within minutes the whole plant is alerted and the plant's defense against its enemy is activated", says Axel Mithöfer from the Max Planck Institute for Chemical Ecology in Jena.

The novel "system potential" was detected in five different plant species, among them agricultural crops like tobacco (Nicotiana tabacum), maize (Zea mays), barley (Hordeum vulgare), and field bean (Vicia faba).

Original Publication:

M. R. Zimmermann, H. Maischak, A. Mithöfer, W. Boland, H. H. Felle:
System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding.

Plant Physiology 149, 1593-1600 (2009)

Hubert H. Felle | EurekAlert!
Further information:
http://ww.ice.mpg.de

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>