Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric fish plug in to communicate

29.09.2009
Just as people plug in to computers, smart phones and electric outlets to communicate, electric fish communicate by quickly plugging special channels into their cells to generate electrical impulses, University of Texas at Austin researchers have discovered.

The fish generate electric fields to navigate, fight and attract mates in murky streams and rivers throughout Central and South America. They do so at night, while trying to avoid predators such as catfish that sense the electric fields.

Generating electricity is costly (ask any homeowner paying for air conditioning during a hot summer), and the fish are using a dimmer switch to save energy by turning their electrical signals up and down, says Harold Zakon, professor of neurobiology.

Zakon, Michael Markham and Lynne McAnelly published their findings on the electric fish in PLoS Biology on Sept. 29.

They found that the dimmer switch comes in the form of sodium channels the fish insert and remove from the membranes of special cells, called electrocytes, within their electric organs. When more sodium channels are in the cell membrane, the electric impulse emitted by the electric organ is greater.

The scientists also show that the process is under the control of hormones. And it is maintained through a day-night circadian rhythm and can change rapidly during social encounters.

"For a vertebrate animal, this is the first account that brings the whole system together from the behavior down to the rapid insertion of channels and in such an ecologically meaningful way," says Markham, a research scientist in the Zakon laboratory. "This is part of the animal's every day activity and it is being regulated very tightly by a low level molecular change."

Markham says the rapidity of the action is particularly stunning.

"This is happening within a matter of two to three minutes," he says. "The machinery is there to make this dramatic remodeling of the cell, and it does so within minutes from the time that some sort of stimulus is introduced in the environment."

The electric impulse can likely be produced so quickly because a reservoir of sodium channels is sitting in storage in the electric cells. When serotonin is released in the fish brain, it initiates the release of adrenocorticotropic hormone from the pituitary gland. This gooses the mechanism that puts more sodium channels in the membrane.

"It's kind of like stepping on the gas in a car sitting there with its engine already running," says Zakon.

When the fish are inactive, they remove the sodium channels from the cell membranes to reduce the intensity of the electric impulse.

The electrocytes in the fishes' electric organ are made of modified muscle cells. This is significant because the vertebrate heart, which is also a muscle, can also add sodium channels to its cells to help it pump faster. The electric organ and heart are discharging constantly, and both organs are energetically costly.

"One big question for us in the future is, did this mechanism evolve once a long time ago or is this a case of convergent evolution, where the vertebrate heart evolved the ability to traffic these channels and then the electric organ evolved the same ability independently?" says Zakon.

McAnelly was a research scientist in the Zakon lab and is director of the Women In Natural Sciences program at The University of Texas at Austin. A fourth collaborator on the research, Philip Stoddard, is a professor at Florida International University.

Michael Markham | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>