Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric fish plug in to communicate

29.09.2009
Just as people plug in to computers, smart phones and electric outlets to communicate, electric fish communicate by quickly plugging special channels into their cells to generate electrical impulses, University of Texas at Austin researchers have discovered.

The fish generate electric fields to navigate, fight and attract mates in murky streams and rivers throughout Central and South America. They do so at night, while trying to avoid predators such as catfish that sense the electric fields.

Generating electricity is costly (ask any homeowner paying for air conditioning during a hot summer), and the fish are using a dimmer switch to save energy by turning their electrical signals up and down, says Harold Zakon, professor of neurobiology.

Zakon, Michael Markham and Lynne McAnelly published their findings on the electric fish in PLoS Biology on Sept. 29.

They found that the dimmer switch comes in the form of sodium channels the fish insert and remove from the membranes of special cells, called electrocytes, within their electric organs. When more sodium channels are in the cell membrane, the electric impulse emitted by the electric organ is greater.

The scientists also show that the process is under the control of hormones. And it is maintained through a day-night circadian rhythm and can change rapidly during social encounters.

"For a vertebrate animal, this is the first account that brings the whole system together from the behavior down to the rapid insertion of channels and in such an ecologically meaningful way," says Markham, a research scientist in the Zakon laboratory. "This is part of the animal's every day activity and it is being regulated very tightly by a low level molecular change."

Markham says the rapidity of the action is particularly stunning.

"This is happening within a matter of two to three minutes," he says. "The machinery is there to make this dramatic remodeling of the cell, and it does so within minutes from the time that some sort of stimulus is introduced in the environment."

The electric impulse can likely be produced so quickly because a reservoir of sodium channels is sitting in storage in the electric cells. When serotonin is released in the fish brain, it initiates the release of adrenocorticotropic hormone from the pituitary gland. This gooses the mechanism that puts more sodium channels in the membrane.

"It's kind of like stepping on the gas in a car sitting there with its engine already running," says Zakon.

When the fish are inactive, they remove the sodium channels from the cell membranes to reduce the intensity of the electric impulse.

The electrocytes in the fishes' electric organ are made of modified muscle cells. This is significant because the vertebrate heart, which is also a muscle, can also add sodium channels to its cells to help it pump faster. The electric organ and heart are discharging constantly, and both organs are energetically costly.

"One big question for us in the future is, did this mechanism evolve once a long time ago or is this a case of convergent evolution, where the vertebrate heart evolved the ability to traffic these channels and then the electric organ evolved the same ability independently?" says Zakon.

McAnelly was a research scientist in the Zakon lab and is director of the Women In Natural Sciences program at The University of Texas at Austin. A fourth collaborator on the research, Philip Stoddard, is a professor at Florida International University.

Michael Markham | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>