Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein researchers find molecular structure of key fluorescent proteins

23.04.2010
Scientists at Albert Einstein College of Medicine of Yeshiva University have determined the crystal structures of two key fluorescent proteins – one blue, one red – used to “light up” molecules in cells.

That finding has allowed them to propose a chemical mechanism by which the red color in fluorescent proteins is formed from blue. With this information, the researchers now have the first roadmap for rationally designing new and differently colored fluorescent proteins to illuminate the structures and processes in living cells.

Such colored probes could provide a window, for example, into how biological processes in normal cells differ from those in cancer cells. Their study appears in the April 23 print edition of Chemistry & Biology, a Cell Press publication.

This advance will expand the imaging revolution that began with a protein found in jellyfish. In 1992, researchers reported that the gene for green fluorescent protein (GFP) could be fused to any gene in a living cell. When the targeted gene is expressed, a “fusion protein” (consisting of the targeted gene’s protein plus GFP) is formed. This fusion protein exhibits bright green fluorescence when exposed to blue light.

Thanks to GFP, scientists had a green imaging probe offering unprecedented access to the internal workings of living cells. They were able to use high-resolution light (optical) microscopes to observe the activation of genes of interest and to quantify and track newly expressed proteins as they perform their functions in living cells. The 2008 Nobel Prize in Chemistry was awarded to three non-Einstein scientists for their GFP-related discoveries.

Many more fluorescent proteins of various colors were later found in other marine organisms such as corals. But the molecular nature of these colors remained a mystery, hindering the development of new imaging probes. Scientists seeking new fluorescent probes first had to fuse the genes for known fluorescent proteins to bacteria; then they exposed millions of these microorganisms to radiation, in hopes of producing random genetic mutations that lead to new and useful fluorescent proteins. The discovery by Einstein researchers will allow fluorescent proteins to be created in a much more systematic and rational way.

"Knowing the molecular structures of the chromophores – the part of fluorescent protein molecules that gives them their color – we can now do hypothesis-based designing of new probes, instead of relying on random mutations,” says principal investigator Vladislav Verkhusha, Ph.D., associate professor of anatomy and structural biology and member of the Gruss Lipper Biophotonics Center at Einstein.

“In other words,” says Dr. Verkhusha, “if we now change this or that fluorescent protein molecule in a certain way, we can predict that the change will yield a new protein that has a particular fluorescent color or other property that we are interested in.” Using this new information, Dr. Verkhusha’s laboratory has already designed a variety of new fluorescent proteins that can glow in colors ranging from blue to far-red.

Since researchers can now follow only two or three proteins at a time, an expanded fluorescent protein palette would be a big help. “To understand many cellular functions, you would like to follow dozens of different proteins, so the more colors we can develop, the better,” says study co-author Steven C. Almo, Ph.D., professor of biochemistry and of physiology & biophysics at Einstein. He is an expert in x-ray crystallography, a method that determines the arrangement of atoms within a protein by striking the protein crystal with a beam of x rays.

The findings reported in the Chemistry & Biology paper resulted from a multidisciplinary research effort involving Einstein’s Structural Biology Center (where x-ray crystallography studies are carried out) and its Gruss Lipper Biophotonics Center (which develops advanced microscopy techniques to study biological problems related to human disease).

Dr. Verkhusha’s laboratory has also developed new red fluorescent proteins that are photoactivatable, meaning that they can be turned on from the dark to the fluorescent state using a short pulse of light. With these versatile probes, researchers can use real-time super-resolution fluorescence microscopy to capture images as small as 15 to 20 nanometers (the scale of single molecules) in living cells. Before such probes were available, super-resolution fluorescence microscopy could be done only in non-living cells.

Recently, one of Dr. Verkhusha’s photoactivatable probes allowed Einstein scientists to view individual breast cancer cells for several days at a time to obtain new insights into metastasis, the process by which tumor cells spread to other parts of the body. “Mapping the fate of tumor cells in different regions of a tumor was not possible before the development of photoswitching technology,” explains John S. Condeelis, Ph.D., co-chair and professor of anatomy and structural biology, co-director of the Gruss Lipper Biophotonics Center, and the Judith and Burton P. Resnick Chair in Translational Research.

The paper, “Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins,” is published in the April 23 print edition of Chemistry & Biology (Cell Press). Other Einstein researchers who contributed to the study were Oksana M. Subach, Ph.D., Vladimir N. Malashkevich, Ph.D., Wendy D. Zencheck, Ph.D., Kateryna S. Morozova, M.S., and Kiryl D. Piatkevich, M.S.

Deirdre Branley | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>