Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Einstein researchers find molecular structure of key fluorescent proteins

Scientists at Albert Einstein College of Medicine of Yeshiva University have determined the crystal structures of two key fluorescent proteins – one blue, one red – used to “light up” molecules in cells.

That finding has allowed them to propose a chemical mechanism by which the red color in fluorescent proteins is formed from blue. With this information, the researchers now have the first roadmap for rationally designing new and differently colored fluorescent proteins to illuminate the structures and processes in living cells.

Such colored probes could provide a window, for example, into how biological processes in normal cells differ from those in cancer cells. Their study appears in the April 23 print edition of Chemistry & Biology, a Cell Press publication.

This advance will expand the imaging revolution that began with a protein found in jellyfish. In 1992, researchers reported that the gene for green fluorescent protein (GFP) could be fused to any gene in a living cell. When the targeted gene is expressed, a “fusion protein” (consisting of the targeted gene’s protein plus GFP) is formed. This fusion protein exhibits bright green fluorescence when exposed to blue light.

Thanks to GFP, scientists had a green imaging probe offering unprecedented access to the internal workings of living cells. They were able to use high-resolution light (optical) microscopes to observe the activation of genes of interest and to quantify and track newly expressed proteins as they perform their functions in living cells. The 2008 Nobel Prize in Chemistry was awarded to three non-Einstein scientists for their GFP-related discoveries.

Many more fluorescent proteins of various colors were later found in other marine organisms such as corals. But the molecular nature of these colors remained a mystery, hindering the development of new imaging probes. Scientists seeking new fluorescent probes first had to fuse the genes for known fluorescent proteins to bacteria; then they exposed millions of these microorganisms to radiation, in hopes of producing random genetic mutations that lead to new and useful fluorescent proteins. The discovery by Einstein researchers will allow fluorescent proteins to be created in a much more systematic and rational way.

"Knowing the molecular structures of the chromophores – the part of fluorescent protein molecules that gives them their color – we can now do hypothesis-based designing of new probes, instead of relying on random mutations,” says principal investigator Vladislav Verkhusha, Ph.D., associate professor of anatomy and structural biology and member of the Gruss Lipper Biophotonics Center at Einstein.

“In other words,” says Dr. Verkhusha, “if we now change this or that fluorescent protein molecule in a certain way, we can predict that the change will yield a new protein that has a particular fluorescent color or other property that we are interested in.” Using this new information, Dr. Verkhusha’s laboratory has already designed a variety of new fluorescent proteins that can glow in colors ranging from blue to far-red.

Since researchers can now follow only two or three proteins at a time, an expanded fluorescent protein palette would be a big help. “To understand many cellular functions, you would like to follow dozens of different proteins, so the more colors we can develop, the better,” says study co-author Steven C. Almo, Ph.D., professor of biochemistry and of physiology & biophysics at Einstein. He is an expert in x-ray crystallography, a method that determines the arrangement of atoms within a protein by striking the protein crystal with a beam of x rays.

The findings reported in the Chemistry & Biology paper resulted from a multidisciplinary research effort involving Einstein’s Structural Biology Center (where x-ray crystallography studies are carried out) and its Gruss Lipper Biophotonics Center (which develops advanced microscopy techniques to study biological problems related to human disease).

Dr. Verkhusha’s laboratory has also developed new red fluorescent proteins that are photoactivatable, meaning that they can be turned on from the dark to the fluorescent state using a short pulse of light. With these versatile probes, researchers can use real-time super-resolution fluorescence microscopy to capture images as small as 15 to 20 nanometers (the scale of single molecules) in living cells. Before such probes were available, super-resolution fluorescence microscopy could be done only in non-living cells.

Recently, one of Dr. Verkhusha’s photoactivatable probes allowed Einstein scientists to view individual breast cancer cells for several days at a time to obtain new insights into metastasis, the process by which tumor cells spread to other parts of the body. “Mapping the fate of tumor cells in different regions of a tumor was not possible before the development of photoswitching technology,” explains John S. Condeelis, Ph.D., co-chair and professor of anatomy and structural biology, co-director of the Gruss Lipper Biophotonics Center, and the Judith and Burton P. Resnick Chair in Translational Research.

The paper, “Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins,” is published in the April 23 print edition of Chemistry & Biology (Cell Press). Other Einstein researchers who contributed to the study were Oksana M. Subach, Ph.D., Vladimir N. Malashkevich, Ph.D., Wendy D. Zencheck, Ph.D., Kateryna S. Morozova, M.S., and Kiryl D. Piatkevich, M.S.

Deirdre Branley | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>