Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein offers easy-to-use genome analyzer to scientific community

08.06.2011
Scientists at Albert Einstein College of Medicine of Yeshiva University have developed a desktop genome analyzer and browser that allows biologists to rapidly and easily analyze and process their high-throughput data. The open-source software, called GenPlay, is described in the May 19 online edition of Bioinformatics.

Currently, genomic data is analyzed mainly by information specialists rather than by the biologists who designed the experiments that produce the data. GenPlay was created with the goal of offering biologists a user-friendly, multi-purpose tool that can help them visualize, analyze and transform their raw data into biologically relevant tracks.

"The first human genome was sequenced 10 years ago by an international consortium at a cost of $7 billion," notes GenPlay co-developer Eric Bouhassira, Ph.D., senior author of the Bioinformatics article, professor of medicine and of cell biology, and the Ingeborg and Ira Leon Rennert Professor of Stem Cell Biology and Regenerative Medicine at Einstein. "But today, a complete genome can be sequenced for less than $10,000 and the cost is predicted to drop to less than $1,000 in a few years. The dramatic dip in cost has led to the creation of an avalanche of new data that biologists are having trouble analyzing. GenPlay is intended to make it easier for biologists to make sense of their data."

A dozen or so genome browsers are currently available. GenPlay offers a major advantage over the others, says Dr. Bouhassira, because it "emphasizes letting biologists take control of their own data by providing continuous visual feedback together with extremely rapid browsing at every decision point during an analysis."

GenPlay handles three major types of data: data from gene expression studies, epigenetic data, and single nucleotide polymorphism (SNP) data. The free GenPlay software is available from http://www.genplay.net (http://genplay.einstein.yu.edu/wiki/index.php/Main_Page).

The Bioinformatics paper is titled "GenPlay, a Multi-Purpose Genome Analyzer and Browser." The lead author of the paper is Julien Lajugie, M.S., associate in Einstein's department of medicine, who co-developed GenPlay and wrote the GenPlay program. The project was funded by New York State Stem Cell Science (NYSTEM)( http://stemcell.ny.gov/).

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. During the 2009-2010 academic year, Einstein is home to 722 M.D. students, 243 Ph.D. students, 128 students in the combined M.D./Ph.D. program, and approximately 350 postdoctoral research fellows. The College of Medicine has 2,775 fulltime faculty members located on the main campus and at its clinical affiliates. In 2009, Einstein received more than $155 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five medical centers in the Bronx, Manhattan and Long Island - which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein - the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training.

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>