Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EHEC: Scientists of Münster identify genome sequence of a comparable strain of the year 2001

06.06.2011
Comparison with the sequence of the current E. coli HUSEC041 (O104:H4) outbreak strain has begun

Investigations shall deliver further indications as to the behavior of the current pathogen

Yesterday, Sunday 5th June, at 13:30 CET, scientists of the Medical Faculty of the University Münster and the University Hospital Münster finalized the whole genome sequencing of a historic EHEC (O104:H4) isolate that will be compared with the current German E. coli HUSEC041 (O104:H4) outbreak strain. Through comparison of both data records the team of scientists, led by Prof. Dr. Dr. h.c. Helge Karch, head of the Hygiene Institute at Münster´s University, hopes to achieve further valuable indications regarding the causes for the extreme aggressive behavior of the current outbreak strain.

Only some days ago, on 25th May the scientists of Münster were able to name and distinguish

HUSEC041 (O104:H4) being the current outbreak isolate. With the investigations taking place at present, the question most looked at is why and in which exact form this strain has altered compared with the isolates gained ten years ago; e.g. the current outbreak strain is resistant to a special class of antibiotics. The outbreak strain is not new and had already occurred earlier but is extremely rare. With this approach scientists of various institutions of the Medical Faculty Münster and the University Hospital Münster work together in close cooperation.

The microbiologist Prof. Dr. Dag Harmsen is conducting the team responsible for sequencing in Münster. The head of research of the Department of Periodontology in Münster explains the procedure: `The DNA of the current outbreak isolate has been submitted to scientists of the enterprise `Life Technology Corporation´ in Darmstadt who have carried out the genome sequencing. Now we have – in an almost impossible short time of just three days – deciphered the genome sequence of an historic 2001 isolate.´ Such a quick sequencing is to be considered `a scientific masterpiece, which will further contribute to the better understanding of the present outbreak and thereby finally assist to implement next steps to be taken in the sometimes very serious course of the disease with the patients affected´, explains Prof. Dr. Wilhelm Schmitz, Dean of the Medical Faculty of the University Münster.

To analyze the available results of both sequencings in comparison - exactly and with the utmost care – is now the main thing, adds Prof. Harmsen. Harmsen: `For now we have identified the letters but to understand the words or maybe the entire book of the genome, substantial expertise in biology as well as in bio-informatics is required in the analysis which is going on at present with all efforts thinkable we have at our hands. This analysis shall then be the fundamental for all further steps.´

For the moment, we do not – however – expect results from the analysis, which could be of immediate value as to diagnosis or therapy. We do hope to gain precious indications by the comparison of both genome sequences about what makes the outbreak strain so aggressive´, according to Dr. Alexander Mellmann of the `National Consulting Laboratory for Haemolytic Uraemic Syndrome (HUS) of the Robert Koch Institute’ at the Institute of Hygiene Münster.

Simultaneously with these research works further investigations are carried out under the supervision of Prof. Dr. Dr. h.c. Helge Karch for the better understanding and for the biological behavior of the current outbreak stain. Here questions about its already detected resistance against antibiotics or its behavior under special environmental conditions will be dealt with and are the center of the attention. The target is to achieve valuable hints about its natural reservoir. `These questions are important in order to remove the pathogen from the environment once the source of the infection and its reservoir has been located. It is of course our goal to avoid further outbreaks in the future´, says Prof. Karch.

Clues to editorial staff

As already published the present outbreak strain is an EHEC type belonging to the serogroup O104. On the 25th May, scientists of the University of Münster could already molecular-biologically prove `H4´ as the H-antigene. The so called `multilocus sequence type´ (MLST) is `ST678´. In the Münster reference collection of HUS-associated EHEC isolates, a `O104:H4´ serotype is distinguished as `HUSEC041´.

An overview regarding the HUSEC reference strain collection is provided under www.ehec.org. (`HUSEC-reference collection´).

There current laboratory information is available about the test procedures developed in Münster for the present outbreak strain (`Laborinfo´).

Stefan Dreising | Universitätsklinikum Münster
Further information:
http://www.ehec.org
http://www.ukmuenster.de

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Error-free into the Quantum Computer Age

18.12.2017 | Physics and Astronomy

Disarray in the brain

18.12.2017 | Studies and Analyses

2 million euros in funding for new MR-compatible electrophysiological brain implants

18.12.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>