Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The egg makes sure that sperm don't get too old

25.03.2009
In contrast to women, men are fertile throughout life, but research at the Sahlgrenska Academy, University of Gothenburg, Sweden, has now shown that a fertilising sperm can get help from the egg to rejuvenate. The result is an important step towards future stem cell therapy.

The risk of chromosomal abnormalities in the foetus is highly correlated to the age of the mother, but is nearly independent of the age of the father. One possible explanation is that egg cells have a unique ability to reset the age of a sperm.

"We are the first to show that egg cells have the ability to rejuvenate other cells, and this is an important result for future stem cell research", says Associate Professor Tomas Simonsson, who leads the research group at the Sahlgrenska Academy that has made this discovery.

Each time a cell divides, the genetic material at the ends of the chromosomes becomes shorter. The ends of the chromosomes, known as "telomeres", are important for the genetic stability of the cell and they act as a DNA clock that measures the age of the cell. The cell stops dividing and dies when the telomeres become too short.

The discovery that the egg cell can extend the telomeres of a fertilising sperm cell is important in the development of stem cell therapy. Stem cell therapy involves replacing the cell nucleus in unfertilised egg with a nucleus from a somatic cell that has come from a patient who needs a stem cell transplantation. As soon as the cell has divided a few times, it is possible to harvest stem cells that are then allowed to mature to the cell type that the recipient needs.

"The genetic stability of the transplanted cells has been a serious concern up until now, and it was feared that the lifetime of these cells would depend on the age of the cell nucleus that was transferred. Our results suggest that this is not the case", says Tomas Simonsson.

BRIEF FACTS: STEM CELL THERAPY
Stem cell therapy is based on the transfer of cells to replace cells that have become diseased or died. Reprogrammed stem cells have so far only been used in animal experiments. Much research remains to be done, but it is considered to be only a question of time before stem cell therapy becomes a possible treatment for diseases such as Parkinson disease, diabetes type I, muscular dystrophy and hereditary immune deficiency.
For more information contact:
Associate Professor Tomas Simonsson, telephone: +46 31 786 3497, Mobile: +46 730 247257, e-mail: tomas.simonsson@gu.se
Journal: FASEB Journal
Article title: Developmental studies of Xenopus shelterin complexes: the message to reset telomeres is already present in the egg

Authors: Dzeneta Vizlin-Hodzic, Jessica Ryme, Stina Simonsson, Tomas Simonsson

Elin Lindström Claessen
Public relations officer, Sahlgrenska Academy at the University of Gothenburg
Telephone: +46 31 786 3837, mobile: +46 70 829 4303,
e-mail: elin.lindstrom@sahlgrenska.gu.se
The Sahlgrenska Academy is the faculty of health sciences at the University of Gothenburg. Education and research are conducted within the fields of pharmacy, medicine, odontology and health care sciences.

About 4000 undergraduate students and 1000 postgraduate students are enrolled at Sahlgrenska Academy. The staff is about 1500 persons. 850 of them are researchers and/or teachers.

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.sahlgrenska.gu.se/aktuellt/nyheter/Nyheter+Detalj?contentId=874903

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>