Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EGF Growth Factor Accelerates Cell Division

14.05.2013
Heidelberg scientists discover new approaches to cancer treatment

Biologists at Heidelberg University have discovered new approaches for the treatment of cancer. They investigated how a special signalling molecule, the epidermal growth factor (EGF), stimulates the separation of chromosomes in the cell.

The researchers were able to demonstrate that EGF accelerates the division of the cell nucleus, i.e. mitosis, as well as boosts precision in chromosome segregation. “Because the regulation of the EGF pathway is radically altered in many types of cancers, the results of our research point to new approaches in cancer therapy”, explains Prof. Dr. Elmar Schiebel from the Center for Molecular Biology of Heidelberg University (ZMBH). Together with scientists from the University of Leicester, the European Molecular Biology Laboratory and the German Cancer Research Center, Prof. Schiebel and his team have published their findings in the journal “Developmental Cell”.

“The duplication of cells is an extremely vital and highly regulated process that can lead to cancer if it goes awry”, states Prof. Schiebel. During the mitosis phase of cell duplication, the genetic information is passed to the daughter cells by the spindle apparatus. The assembly of the spindle apparatus begins with the dissolution of the filamentous connection between the centrosomes. The centrosomes are responsible for the organisation of the spindle fibres, the microtubules.
The microtubules, which control chromosome separation during mitosis, bind to the genetic material when mitosis begins and then slide the chromosomes toward the two spindle poles. The cell then splits into two daughter cells. “Our current study has shown that the centrosomes of cells stimulated by the growth factor EGF split apart earlier than in cells with less EGF stimulation. This makes mitosis in EGF stimulated cells quicker and more precise”, says Prof. Schiebel.

The results of this research are particularly significant for certain cancer therapy agents that block the spindle fibres and thereby prevent chromosome division during mitosis. These agents act on cancer cells, which divide more often than healthy ones, by selectively killing them. Prof. Schiebel indicates that cytostatics such as taxol have considerable side effects. Researchers are therefore endeavouring to find other drug targets with a function in mitosis for treating cancer.

According to Prof. Schiebel, the Eg5 motor protein is a target candidate since it is vital for mitosis. Eg5 orchestrates the separation of the two spindle poles, which correctly divide the chromosomes between the daughter cells. If synthetic substances such as monastrol or STLC inhibit Eg5, the cell cycle becomes arrested in mitosis. This causes programmed cell death; the “defective cells” are eliminated.
Prof. Schiebel’s team has now discovered that cells stimulated by the EGF growth factor bypass the function of Eg5 during nuclear division and can proceed with mitosis without the motor protein Eg5. This means that substances like monastrol or STLC lose their effectiveness to kill cancer cells if they have high EGF regulation. “In terms of new approaches to cancer treatment, we see the need that not only the Eg5 protein is blocked, but the EGF pathway as well”, explains Prof. Schiebel. “The efficacy of this new strategy in treating cancer patients must now be verified in clinical studies.”

Original publication:
B. R. Mardin, M. Isokane, M. R. Cosenza, A. Krämer, J. Ellenberg, A. M. Fry, and E. Schiebel:
EGF-Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival;

Developmental Cell 25, 229-240, May 13, 2013), doi: 10.1016/j.devcel.2013.03.012

Contact:
Prof. Dr. Elmar Schiebel
Center for Molecular Biology of Heidelberg University
Phone +49 6221 54-6814
schiebel.elmar@zmbh.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>