Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EGF Growth Factor Accelerates Cell Division

14.05.2013
Heidelberg scientists discover new approaches to cancer treatment

Biologists at Heidelberg University have discovered new approaches for the treatment of cancer. They investigated how a special signalling molecule, the epidermal growth factor (EGF), stimulates the separation of chromosomes in the cell.

The researchers were able to demonstrate that EGF accelerates the division of the cell nucleus, i.e. mitosis, as well as boosts precision in chromosome segregation. “Because the regulation of the EGF pathway is radically altered in many types of cancers, the results of our research point to new approaches in cancer therapy”, explains Prof. Dr. Elmar Schiebel from the Center for Molecular Biology of Heidelberg University (ZMBH). Together with scientists from the University of Leicester, the European Molecular Biology Laboratory and the German Cancer Research Center, Prof. Schiebel and his team have published their findings in the journal “Developmental Cell”.

“The duplication of cells is an extremely vital and highly regulated process that can lead to cancer if it goes awry”, states Prof. Schiebel. During the mitosis phase of cell duplication, the genetic information is passed to the daughter cells by the spindle apparatus. The assembly of the spindle apparatus begins with the dissolution of the filamentous connection between the centrosomes. The centrosomes are responsible for the organisation of the spindle fibres, the microtubules.
The microtubules, which control chromosome separation during mitosis, bind to the genetic material when mitosis begins and then slide the chromosomes toward the two spindle poles. The cell then splits into two daughter cells. “Our current study has shown that the centrosomes of cells stimulated by the growth factor EGF split apart earlier than in cells with less EGF stimulation. This makes mitosis in EGF stimulated cells quicker and more precise”, says Prof. Schiebel.

The results of this research are particularly significant for certain cancer therapy agents that block the spindle fibres and thereby prevent chromosome division during mitosis. These agents act on cancer cells, which divide more often than healthy ones, by selectively killing them. Prof. Schiebel indicates that cytostatics such as taxol have considerable side effects. Researchers are therefore endeavouring to find other drug targets with a function in mitosis for treating cancer.

According to Prof. Schiebel, the Eg5 motor protein is a target candidate since it is vital for mitosis. Eg5 orchestrates the separation of the two spindle poles, which correctly divide the chromosomes between the daughter cells. If synthetic substances such as monastrol or STLC inhibit Eg5, the cell cycle becomes arrested in mitosis. This causes programmed cell death; the “defective cells” are eliminated.
Prof. Schiebel’s team has now discovered that cells stimulated by the EGF growth factor bypass the function of Eg5 during nuclear division and can proceed with mitosis without the motor protein Eg5. This means that substances like monastrol or STLC lose their effectiveness to kill cancer cells if they have high EGF regulation. “In terms of new approaches to cancer treatment, we see the need that not only the Eg5 protein is blocked, but the EGF pathway as well”, explains Prof. Schiebel. “The efficacy of this new strategy in treating cancer patients must now be verified in clinical studies.”

Original publication:
B. R. Mardin, M. Isokane, M. R. Cosenza, A. Krämer, J. Ellenberg, A. M. Fry, and E. Schiebel:
EGF-Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival;

Developmental Cell 25, 229-240, May 13, 2013), doi: 10.1016/j.devcel.2013.03.012

Contact:
Prof. Dr. Elmar Schiebel
Center for Molecular Biology of Heidelberg University
Phone +49 6221 54-6814
schiebel.elmar@zmbh.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht No gene is an island
25.07.2017 | Institute of Science and Technology Austria

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

No gene is an island

25.07.2017 | Life Sciences

Flexible proximity sensor creates smart surfaces

25.07.2017 | Materials Sciences

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>