Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EGF Growth Factor Accelerates Cell Division

14.05.2013
Heidelberg scientists discover new approaches to cancer treatment

Biologists at Heidelberg University have discovered new approaches for the treatment of cancer. They investigated how a special signalling molecule, the epidermal growth factor (EGF), stimulates the separation of chromosomes in the cell.

The researchers were able to demonstrate that EGF accelerates the division of the cell nucleus, i.e. mitosis, as well as boosts precision in chromosome segregation. “Because the regulation of the EGF pathway is radically altered in many types of cancers, the results of our research point to new approaches in cancer therapy”, explains Prof. Dr. Elmar Schiebel from the Center for Molecular Biology of Heidelberg University (ZMBH). Together with scientists from the University of Leicester, the European Molecular Biology Laboratory and the German Cancer Research Center, Prof. Schiebel and his team have published their findings in the journal “Developmental Cell”.

“The duplication of cells is an extremely vital and highly regulated process that can lead to cancer if it goes awry”, states Prof. Schiebel. During the mitosis phase of cell duplication, the genetic information is passed to the daughter cells by the spindle apparatus. The assembly of the spindle apparatus begins with the dissolution of the filamentous connection between the centrosomes. The centrosomes are responsible for the organisation of the spindle fibres, the microtubules.
The microtubules, which control chromosome separation during mitosis, bind to the genetic material when mitosis begins and then slide the chromosomes toward the two spindle poles. The cell then splits into two daughter cells. “Our current study has shown that the centrosomes of cells stimulated by the growth factor EGF split apart earlier than in cells with less EGF stimulation. This makes mitosis in EGF stimulated cells quicker and more precise”, says Prof. Schiebel.

The results of this research are particularly significant for certain cancer therapy agents that block the spindle fibres and thereby prevent chromosome division during mitosis. These agents act on cancer cells, which divide more often than healthy ones, by selectively killing them. Prof. Schiebel indicates that cytostatics such as taxol have considerable side effects. Researchers are therefore endeavouring to find other drug targets with a function in mitosis for treating cancer.

According to Prof. Schiebel, the Eg5 motor protein is a target candidate since it is vital for mitosis. Eg5 orchestrates the separation of the two spindle poles, which correctly divide the chromosomes between the daughter cells. If synthetic substances such as monastrol or STLC inhibit Eg5, the cell cycle becomes arrested in mitosis. This causes programmed cell death; the “defective cells” are eliminated.
Prof. Schiebel’s team has now discovered that cells stimulated by the EGF growth factor bypass the function of Eg5 during nuclear division and can proceed with mitosis without the motor protein Eg5. This means that substances like monastrol or STLC lose their effectiveness to kill cancer cells if they have high EGF regulation. “In terms of new approaches to cancer treatment, we see the need that not only the Eg5 protein is blocked, but the EGF pathway as well”, explains Prof. Schiebel. “The efficacy of this new strategy in treating cancer patients must now be verified in clinical studies.”

Original publication:
B. R. Mardin, M. Isokane, M. R. Cosenza, A. Krämer, J. Ellenberg, A. M. Fry, and E. Schiebel:
EGF-Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival;

Developmental Cell 25, 229-240, May 13, 2013), doi: 10.1016/j.devcel.2013.03.012

Contact:
Prof. Dr. Elmar Schiebel
Center for Molecular Biology of Heidelberg University
Phone +49 6221 54-6814
schiebel.elmar@zmbh.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>