Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient working in confined spaces: New insights into the architecture of cellular protein factories

23.01.2009
Each cell in an organism possesses its own protein factories known as ribosomes. Every second, these enzyme complexes produce new proteins with messenger molecules (mRNA) from the cell nucleus as blueprints.

In order to generate as many proteins as possible at the same time, several ribosomes cluster together to form an "industrial complex" - the polysome - and read simultaneously the same messenger molecule. Scientists at the Max-Planck-Institute of Biochemistry have now, for the first time, been able to reveal the three-dimensional structure of these complexes (Cell 23.1.2009).


Figure: The three dimensional strucuture of the polysome:Cryoelectron tomographic picture of two polysomes (left), schematic diagram of their structure (middle) and the messenger molecule (mRNA) pathway within the polysome (right). The small ribosomal subunits (yellow) are oriented towards the inside of the polysome, the large subunits (blue) and the nascent protein chains (indicated by red cones) face the cytosol. If the ribosomes are continuously arranged in a \"top-to-top\" orientation (Fig. A, middle), the result is a pseudo-helical structure of the polysome. If the ribosomes are arranged alternating in \"top-to-top\" and in \"top-to-bottom\" orientation (Fig. B, middle), the result is a staggered structure. In both cases the mRNA traverses the shortest possible path from one ribosome to its next neighbor (Fig A and B, right). Florian Brandt, Max-Planck-Institut für Biochemie

In a polysome, the ribosomes are densely packed and exhibit preferred orientations: The small ribosomal subunits are orientated towards the inside of the polysome and the ribosomes are arranged either in a staggered or in a pseudo-helical structure (see figure). This arrangement ensures that the distance between nascent protein chains is maximized, thereby reducing the probability of intermolecular interactions that would give rise to aggregation and limit productive folding. Until now, the belief has been that specialised proteins, the so-called chaperones, would prevent protein misfolding.

Against the background of the new findings, their function appears in a new light: "It appears possible that the main function of chaperones that interact with nascent polypeptide chains is not to suppress chain aggregation within polysomes, but rather to reduce intra-chain misfolding as well as aggregation between different polysomes in the crowded cellular environment", explains Ulrich Hartl, head of the "Cellular Biochemistry" department, who lead the project in cooperation with Wolfgang Baumeister, head of the "Molecular Structural Biology" department.

Moreover, the spatial structure of the polysome enables the ribosomes to process the messenger molecule in the protected area within the polysome and to pass it on without detours. Thus, the architecture of the cellular protein factories facilitates an optimized work flow and increases the efficiency of protein folding.

Original Publication:

The Native 3D Organization of Bacterial Polysomes; Florian Brandt, Adrian H. Elcock, Stephanie A. Etchells, Julio O. Ortiz, F. Ulrich Hartl and Wolfgang Baumeister;

Cell, DOI 10.1016/j.cell.2008.11.016

Contact:

Florian Brandt
Max-Planck Institut für Biochemie
Am Klopferspitz 18
D-82152 Martinsried
Germany
mail: fbrandt@biochem.mpg.de
Dr. Monika Gödde
Public Relations
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
phone: 089 - 8578 3882
mail: goedde@biochem.mpg.de

Eva-Maria Diehl | Max-Planck-Gesellschaft
Further information:
http://www.biochem.mpg.de/baumeister
http://www.biochem.mpg.de/hartl
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>