Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effect of 6 mT SMF on phagocytosis depends on macrophage differentiation degree

06.12.2010
The interest in the biological effects of non-ionizing Electro Magnetic Fields (EMFs) and Static Magnetic Fields (SMFs) on the whole organism, as well on cellular systems, has noticeably increased in recent years in consideration of their increased production (from the generation and transmission of electricity, to domestic appliances and industrial equipment, to telecommunications and broadcasting) and the possible health risk for humans.

About one century ago, associated with the wide use of electricity, artificial electric and magnetic fields became a part of our living environment. The use of technology in communication, entertainment, industry and science enhanced our quality of life. On the other hand, the biological effects of the electric and magnetic fields associated with this technology are not well understood.

In the work published in the December issue of Experimental Biology and Medicine, Dini and coworkers have incorporated nanotechnology, material science, and the clinical imaging modality MRI, to create a nanosized probe capable of noninvasively visualizing and quantifying the blood vessel growth in tumors in a preclinical model. The work was carried out by Elisa Panzarini, as part of his Post Doctoral research, working together with Luciana Dini and other colleagues, at the University of Salento, Department of Biological and Environmental Science and Technology, Lecce, Italy.

Dr. Dini stated "Taking into account that innate immunity is based on macrophage phagocytosis of non-self microrganisms and particles, the exposure to SMF could interfere with a correct immune response. Indeed, phagocytosis of apoptotic cells represents the end point of apoptosis, allowing the fast removal of dead cells by neighbours and macrophages. For phagocytosis of apoptotic cells to proceed correctly requires the action of a number of genes greater than those involved in the induction of the apoptosis itself. Impaired phagocytosis of apoptotic cells is the cause of several diseases."

The research team studied the effects of 6 mT SMF on the phagocytosis process of differentiating macrophages by using human Kupffer cells, Raw 264,7 macrophages and 12-O-tetradecanoylphorbol-13-acetate [TPA]-differentiated THP-1 monocytes and U937 promonocytes. Indeed, macrophage phagocytosis is the basis of innate immunity and the exposure to Static Magnetic Fields could interfere with a correct immunoresponse. In particular, with this study, the researchers aimed to verify the effect of 6 mT SMF on the phagocytosis mechanism and to compare these effects with those on other internalization processes, like endocytosis.

For many years this research team has focused its interest on the study of the biological effects of SMFs, in particular, moderate intensity (ranging from1 mT to 1 T) SMF that represents the lowest intensity able to interfere with the apoptotic process in relation to apoptotic cell death. Results obtained indicating that [1] SMF significantly influences the phagocytosis of apoptotic cells and latex beads, and to a lesser extent, fluid phase endocytosis and that [2] the effect of SMF is dependent on the degree of macrophage differentiation, validate that the primary site of action of SMF is at the plasma membrane. Indeed, the plasma membrane has a pivotal role in the recognition of apoptotic cells and for their engulfment through connection with the cytoskeleton. 6 mT SMF is able to modify cell surface morphology, distribution of plasma membrane proteins, receptors and sugar residues, and disarrange the cytoskeleton.

Dr Dini said "On the basis of the results obtained in this study in human primary macrophages, even if it is not yet possible to foresee application in medicine, it follows that it is better to avoid exposure of patients bearing a wound, inflammatory foci or abnormal production of apoptotic cells to machinery (including medical equipment) producing moderate intensity SMF. The reason being that recruitment of monocytes from the blood could be delayed and thus the rescue of the tissue from inflammation postponed, or a chronic condition could be favored."

Several studies have suggested a potential cause-effect relationship between removal of dead cells and the onset of human pathologies. Indeed, diseases such as LSE, cystic fibrosis, chronic obstructive pulmonary disease (COPD), atherosclerosis, encephalomyelitis autoimmune and multiple sclerosis are correlated to the delayed or inefficient removal of apoptotic cells which can cause persistency of inflammation and tissue damage leading to the onset of immune response. The results obtained in the current study suggest that the exposure to 6 mT SMF affects fluid-phase endocytosis and phagocytosis in monocyte/macrophages in a differentiation degree dependent manner. Thus, even if the underlying biological mechanisms are still for the most part unclear, this work could help to explain the effects of exposure in support of a possible causal relationship between SMF and differentiation degree.

Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "This interesting study by Dini and colleagues suggests the need of thoughtful consideration of the level of Static Magnetic Field exposure that is appropriate for patients bearing a wound and resulting inflammation".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com.

Dr. Luciana Dini | EurekAlert!
Further information:
http://www.unisalento.it
http://www.sebm.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>