Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effect of 6 mT SMF on phagocytosis depends on macrophage differentiation degree

06.12.2010
The interest in the biological effects of non-ionizing Electro Magnetic Fields (EMFs) and Static Magnetic Fields (SMFs) on the whole organism, as well on cellular systems, has noticeably increased in recent years in consideration of their increased production (from the generation and transmission of electricity, to domestic appliances and industrial equipment, to telecommunications and broadcasting) and the possible health risk for humans.

About one century ago, associated with the wide use of electricity, artificial electric and magnetic fields became a part of our living environment. The use of technology in communication, entertainment, industry and science enhanced our quality of life. On the other hand, the biological effects of the electric and magnetic fields associated with this technology are not well understood.

In the work published in the December issue of Experimental Biology and Medicine, Dini and coworkers have incorporated nanotechnology, material science, and the clinical imaging modality MRI, to create a nanosized probe capable of noninvasively visualizing and quantifying the blood vessel growth in tumors in a preclinical model. The work was carried out by Elisa Panzarini, as part of his Post Doctoral research, working together with Luciana Dini and other colleagues, at the University of Salento, Department of Biological and Environmental Science and Technology, Lecce, Italy.

Dr. Dini stated "Taking into account that innate immunity is based on macrophage phagocytosis of non-self microrganisms and particles, the exposure to SMF could interfere with a correct immune response. Indeed, phagocytosis of apoptotic cells represents the end point of apoptosis, allowing the fast removal of dead cells by neighbours and macrophages. For phagocytosis of apoptotic cells to proceed correctly requires the action of a number of genes greater than those involved in the induction of the apoptosis itself. Impaired phagocytosis of apoptotic cells is the cause of several diseases."

The research team studied the effects of 6 mT SMF on the phagocytosis process of differentiating macrophages by using human Kupffer cells, Raw 264,7 macrophages and 12-O-tetradecanoylphorbol-13-acetate [TPA]-differentiated THP-1 monocytes and U937 promonocytes. Indeed, macrophage phagocytosis is the basis of innate immunity and the exposure to Static Magnetic Fields could interfere with a correct immunoresponse. In particular, with this study, the researchers aimed to verify the effect of 6 mT SMF on the phagocytosis mechanism and to compare these effects with those on other internalization processes, like endocytosis.

For many years this research team has focused its interest on the study of the biological effects of SMFs, in particular, moderate intensity (ranging from1 mT to 1 T) SMF that represents the lowest intensity able to interfere with the apoptotic process in relation to apoptotic cell death. Results obtained indicating that [1] SMF significantly influences the phagocytosis of apoptotic cells and latex beads, and to a lesser extent, fluid phase endocytosis and that [2] the effect of SMF is dependent on the degree of macrophage differentiation, validate that the primary site of action of SMF is at the plasma membrane. Indeed, the plasma membrane has a pivotal role in the recognition of apoptotic cells and for their engulfment through connection with the cytoskeleton. 6 mT SMF is able to modify cell surface morphology, distribution of plasma membrane proteins, receptors and sugar residues, and disarrange the cytoskeleton.

Dr Dini said "On the basis of the results obtained in this study in human primary macrophages, even if it is not yet possible to foresee application in medicine, it follows that it is better to avoid exposure of patients bearing a wound, inflammatory foci or abnormal production of apoptotic cells to machinery (including medical equipment) producing moderate intensity SMF. The reason being that recruitment of monocytes from the blood could be delayed and thus the rescue of the tissue from inflammation postponed, or a chronic condition could be favored."

Several studies have suggested a potential cause-effect relationship between removal of dead cells and the onset of human pathologies. Indeed, diseases such as LSE, cystic fibrosis, chronic obstructive pulmonary disease (COPD), atherosclerosis, encephalomyelitis autoimmune and multiple sclerosis are correlated to the delayed or inefficient removal of apoptotic cells which can cause persistency of inflammation and tissue damage leading to the onset of immune response. The results obtained in the current study suggest that the exposure to 6 mT SMF affects fluid-phase endocytosis and phagocytosis in monocyte/macrophages in a differentiation degree dependent manner. Thus, even if the underlying biological mechanisms are still for the most part unclear, this work could help to explain the effects of exposure in support of a possible causal relationship between SMF and differentiation degree.

Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "This interesting study by Dini and colleagues suggests the need of thoughtful consideration of the level of Static Magnetic Field exposure that is appropriate for patients bearing a wound and resulting inflammation".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com.

Dr. Luciana Dini | EurekAlert!
Further information:
http://www.unisalento.it
http://www.sebm.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>