Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eclectic Enzymes

02.09.2010
Easily Modified Building Blocks for Drug Design

In the pursuit of biologically active compounds, it is often necessary to be able to control the stereochemistry at predefined positions in a molecular skeleton. The search for ways to prepare chiral building blocks with known configuration that also show structural differentiation is important.

Italian scientists working with Elisabetta Brenna have developed a technique to separate individual stereoisomers of building blocks that can be easily integrated into biologically active molecules. As the scientists from Politecnico di Milano, Milano, Italy, report in the European Journal of Organic Chemistry, their technique relies on the use of enzymes.

The specific activity of a biologically relevant molecule is often dependent on its stereochemistry (i.e., the spatial arrangement of its atoms). However, most compounds showing biological activity have complex structures, making their synthesis difficult. Moreover, compounds with differing stereochemistries can show different activities. Thus, it is sometimes desirable to prepare a range of compounds with the same structural backbone, but having different spatial arrangements of their atoms. The use of configurationally defined building blocks is attractive, but a method to obtain all the stereoisomers of a given building block is thus required.

Brenna and her colleagues have developed a method that allows a mixture of isomers to be differentiated, and it depends on the use of the enzyme lipase PS. The resolution of the stereoisomers relies on the preferential reaction of the enzyme with only one isomer, thereby creating a product mixture containing the desired compound and a mixture of the unreacted isomers. The desired product can be easily separated from the unreacted mixture, which can then be resubjected to the enzyme to undergo further differentiation. In this way, a wide range of building blocks with differing and known stereochemistries can be prepared.

The authors then showed the applicability of their method by incorporating their configurationally defined building blocks into biologically active compounds. Using simple and straightforward organic chemistry transformations, the authors were able to embed their building blocks into two classes of compounds that are of biological interest. Importantly, scientists can now easily examine the biological activities of all the different stereoisomers of a given compound. Thus, the Italian team is well on their way to helping scientists screen a diverse range of potential drugs that may lead to the treatment, cure, prevention, or diagnosis of diseases.

Author: Elisabetta Brenna, Politecnico di Milano (Italy), http://www.chem.polimi.it/people/faculty/elisabetta-brenna/

Title: Oxygenated Stereotriads with Definite Absolute Configuration by Lipase-Mediated Kinetic Resolution: De Novo Synthesis of Imino Sugars and 6-Deoxy-C-glycosides

European Journal of Organic Chemistry , 2010, No. 23, 4468–4475, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201000558

Elisabetta Brenna | Wiley-VCH
Further information:
http://www.wiley-vch.de
http://www.chem.polimi.it/people/faculty/elisabetta-brenna/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>