Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Echoes of phlogiston in stem cell biology

23.09.2009
Before it was learned that matter burns by taking up oxygen, most chemists sought to explain combustion as the release of a mysterious substance, which they named "phlogiston".

Phlogiston theory was a conceptual breakthrough that helped chemists conduct experiments and share ideas. Only when it came to pinning down the distinctive physical properties of phlogiston did it become clear that no such thing exists. Now an opinion piece by Arthur Lander, published in BioMed Central's open access Journal of Biology, argues that the idea of stem cells—a major conceptual breakthrough in biology—is running into similar troubles as investigators try to pin it down to a set of distinctive molecular characteristics.

Professor Lander, Director of the Center for Complex Biological Systems at the University of California, Irvine, USA, argues that neither of the two properties that define 'stem cells' as they are popularly discussed, potency and self-renewal, can be ascribed an exclusive molecular basis, and that both are seen in cell types not usually described as stem cells. He said, "It is curious that, after 45 years, we are unable to place the notion of 'stemness' on a purely molecular footing. Of course, the fact that a goal has not been achieved after a long time does not mean that the answer is not around the corner. But it does give one cause to wonder whether something we are doing needs to change, either in the question we are asking or the way we are approaching it".

Lander writes that 'stemness' should be considered a property of systems, rather than individual cells, describing how a system with stemness is one that can achieve a controlled size, maintain itself homeostatically, and regenerate when necessary. He argues that such behaviors naturally emerge as a consequence of basic engineering principles of feedback control. This is more than a minor semantic quibble - just one practical consequence of an inaccurate understanding of the precise nature of stem cells may be the assumption that specific chemotherapeutic targeting of 'cancer stem cells' will necessarily stop tumors in their tracks. As Lander writes, "If feedback and lineage progression continue to take place in cancerous tissues, we might observe that under different conditions - different stages of tumorigensis, different parts of a tumor, different amounts of tumor cells - that different cell types will assume the role of cancer stem cell".

He concludes, "Like phlogiston, the term 'stem cell' is a scientific concept. Just as investigating the concept of phlogiston allowed the discovery of oxygen and the process of oxidation, it may be that by refashioning our thinking about stem cells – with systems relationships and dynamics taking the place of molecular signatures and simple gene regulatory circuits - the concept of stemness will continue to light the path toward understanding".

Notes to Editors

1. The 'stem cell' concept: is it holding us back?
Arthur D Lander
Journal of Biology 2009, 8:70
doi:10.1186/jbiol177
2. Journal of Biology is an international journal that publishes biological research articles of exceptional interest or importance, together with associated commentary. Original research articles that are accepted for publication are published in full on the web within two weeks, and are immediately made freely available to all. Articles from the full spectrum of biology are appropriate for consideration, provided that they are of substantial interest or importance, or are likely to have a significant and lasting impact on their field.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com
http://jbiol.com/content/8/8/70

Further reports about: BioMed Central Echoes Phlogiston theory STM cell types stem cells synthetic biology

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>