Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Echoes discovered in early visual brain areas play role in working memory

20.02.2009
Vanderbilt University researchers have discovered that early visual areas, long believed to play no role in higher cognitive functions such as memory, retain information previously hidden from brain studies.

The researchers made the discovery using a new technique for decoding data from functional magnetic resonance imaging or fMRI. The findings are a significant step forward in understanding how we perceive, process and remember visual information.

The results were published Feb. 18 online by Nature.

"We discovered that early visual areas play an important role in visual working memory," Frank Tong, co-author of the research and an associate professor of psychology at Vanderbilt, said. "How do people maintain an active representation of what they have just seen moments ago? This has long been a conundrum in the literature.

"Before, we knew that early visual areas of the cerebral cortex that are the first to receive visual information were exquisitely tuned to process incoming visual signals from the eye, but not to store this information," Tong said. "We also knew that the higher-order brain areas responsible for memory lack the visual sensitivity of early brain areas, but somehow people are able to remember a visual pattern with remarkable precision for many seconds, actually, for as long as they keep thinking about that pattern. Our question was, where is this precise information being stored in the brain?

"Using a new technique to analyze fMRI data, we've found that the fine-scale activity patterns in early visual areas reveal a trace or something like an echo of the stimulus that the person is actively retaining, even though the overall activity in these areas is really weak after the stimulus is removed," Tong continued.

"Visual cortex has always been thought to be more stimulus driven and has not been implicated in cognitive processes such as memory or active maintenance of information," Stephenie Harrison, lead author of the research and a graduate student in the Vanderbilt Psychology Department, said. "By using a neural decoding technique, we were able to read out what people were holding in their visual memory. We believe this sustained visual information could be useful when people must perform complex visual tasks in everyday life."

Research subjects were shown two examples of simple striped patterns at different orientations. They were then told to hold either one or the other of the orientations in their mind while being scanned using fMRI. Orientation has long been known to be one of the first and most basic pieces of visual information coded and processed by the brain.

"Through both evolution and learning, the visual system has developed the most efficient ways to code our natural environment, and the most efficient way to code any basic shape or contour is orientation," Tong said. "We used a decoding method to see if the activity patterns contained information about the remembered orientation, and we found that they do. By analyzing responses over several trials, we were able to accurately read out which of the two orientation patterns a subject was holding in his or her mind over 80 percent of the time."

The researchers found that these predictions held true even when the overall level of activity in these visual areas was very weak, no different than looking at a blank screen. This suggests that the act of remembering an image leaves some sort of faint echo or trace in these brain areas. These activity traces are weak but are quite detailed and rich in information.

"By doing these pattern analyses, we were able to find information that was hidden before. We do not know for sure, but it's possible that a lot of information in the brain might be hidden in such activity patterns," Tong said. "Using this decoding technique and others, neuroscientists might get a better understanding of how the brain represents specific cognitive states involving memory, reminiscing, or other visual experiences that do not obviously lead to a huge amount of activity in the visual areas."

Melanie Moran | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>