Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Echoes discovered in early visual brain areas play role in working memory

20.02.2009
Vanderbilt University researchers have discovered that early visual areas, long believed to play no role in higher cognitive functions such as memory, retain information previously hidden from brain studies.

The researchers made the discovery using a new technique for decoding data from functional magnetic resonance imaging or fMRI. The findings are a significant step forward in understanding how we perceive, process and remember visual information.

The results were published Feb. 18 online by Nature.

"We discovered that early visual areas play an important role in visual working memory," Frank Tong, co-author of the research and an associate professor of psychology at Vanderbilt, said. "How do people maintain an active representation of what they have just seen moments ago? This has long been a conundrum in the literature.

"Before, we knew that early visual areas of the cerebral cortex that are the first to receive visual information were exquisitely tuned to process incoming visual signals from the eye, but not to store this information," Tong said. "We also knew that the higher-order brain areas responsible for memory lack the visual sensitivity of early brain areas, but somehow people are able to remember a visual pattern with remarkable precision for many seconds, actually, for as long as they keep thinking about that pattern. Our question was, where is this precise information being stored in the brain?

"Using a new technique to analyze fMRI data, we've found that the fine-scale activity patterns in early visual areas reveal a trace or something like an echo of the stimulus that the person is actively retaining, even though the overall activity in these areas is really weak after the stimulus is removed," Tong continued.

"Visual cortex has always been thought to be more stimulus driven and has not been implicated in cognitive processes such as memory or active maintenance of information," Stephenie Harrison, lead author of the research and a graduate student in the Vanderbilt Psychology Department, said. "By using a neural decoding technique, we were able to read out what people were holding in their visual memory. We believe this sustained visual information could be useful when people must perform complex visual tasks in everyday life."

Research subjects were shown two examples of simple striped patterns at different orientations. They were then told to hold either one or the other of the orientations in their mind while being scanned using fMRI. Orientation has long been known to be one of the first and most basic pieces of visual information coded and processed by the brain.

"Through both evolution and learning, the visual system has developed the most efficient ways to code our natural environment, and the most efficient way to code any basic shape or contour is orientation," Tong said. "We used a decoding method to see if the activity patterns contained information about the remembered orientation, and we found that they do. By analyzing responses over several trials, we were able to accurately read out which of the two orientation patterns a subject was holding in his or her mind over 80 percent of the time."

The researchers found that these predictions held true even when the overall level of activity in these visual areas was very weak, no different than looking at a blank screen. This suggests that the act of remembering an image leaves some sort of faint echo or trace in these brain areas. These activity traces are weak but are quite detailed and rich in information.

"By doing these pattern analyses, we were able to find information that was hidden before. We do not know for sure, but it's possible that a lot of information in the brain might be hidden in such activity patterns," Tong said. "Using this decoding technique and others, neuroscientists might get a better understanding of how the brain represents specific cognitive states involving memory, reminiscing, or other visual experiences that do not obviously lead to a huge amount of activity in the visual areas."

Melanie Moran | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>