Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like Eavesdropping at a Party

01.08.2008
Scientists Discover How a Tiny Protein Senses All the Communications in a Cell

Cells rely on calcium as a universal means of communication. For example, a sudden rush of calcium can trigger nerve cells to convey thoughts in the brain or cause a heart cell to beat.

A longstanding mystery has been how cells and molecules manage to appropriately sense and respond to the variety of calcium fluctuations within cells.

Reporting in the June 27 issue of Cell, a team of biomedical engineers at the Johns Hopkins School of Medicine has discovered how the calcium sensor protein calmodulin can gauge both the local flow of calcium, in through the closest channel, as well as the global calcium flow entering the many channels across the entire cell.

... more about:
»Cell »Yue »calmodulin »lobe

“It’s like being at a cocktail party where the easiest person to listen to is the one closest to you, but we all have the ability to keep an ear out for other interesting conversations going on throughout the room,” says David Yue, M.D., Ph.D., a professor of biomedical engineering at Hopkins. “It turns out that calmodulin is doing a similar thing, sensing the calcium coming through the closest channel through one ear while the other ear ‘listens’ to the calcium coming through distant channels across the cell.”

Normally, calmodulin is positioned right near each calcium channel. Several years ago, scientists discovered that calmodulin somehow can switch its sensory focus between local calcium and global calcium entering the cell through channels at a distance.

The calmodulin protein, explains Yue, is made of two ball-like lobes, and it’s these two lobes that act as the different calcium-sensing “ears.” The C lobe listens locally and the N lobe listens globally, across the whole cell. To figure out how calmodulin’s two lobes can sense different sources of calcium, the team took a two-pronged approach.

First, they used computers to perform mathematical simulations that tested different potential calcium detection mechanisms of the calmodulin lobes. Others have shown that the C lobe of calmodulin hangs onto calcium for a long time, whereas the N lobe lets go rapidly. Their simulations suggested that these slight differences in calcium holding time might play a role in calmodulin’s ability to sense both local and global calcium levels. “Once a local calcium ion sticks to the C lobe, it seldom lets go, and so the local calcium dominates,” says Yue.

By contrast, the N lobe would rapidly let go of calcium and then be empty and available to bind calcium entering the cell from distant calcium channels, allowing reception of global calcium. Similar to the cocktail party, it’s easiest to catch other conversations during the pauses in your own conversation.

The research team then verified their mathematical predictions by testing real calmodulin proteins attached to calcium channels. Using a new approach, they precisely controlled calcium pulses through single calcium channels and watched how calmodulin responded. They were able to confirm the mathematical models.

Understanding the language of calcium is critical for understanding how cells communicate, says Yue, and also important for understanding neural diseases. For instance, early antipsychotic drugs may work by blocking calmodulin action. “Now that we are learning how these drugs actually work,” Yue says, “we can contribute our new understanding of calmodulin to the design of next-generation drugs with greater potency and fewer side effects.”

The research was funded by the National Institutes of Health.

Authors on the paper are Michael Tadross, Ivy Dick and Yue, all of Hopkins.

Audrey Huang | Newswise Science News
Further information:
http://www.jhmi.edu

Further reports about: Cell Yue calmodulin lobe

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>