Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eating estrogenic plants alters hormones in monkeys, may increase aggression and sex

20.11.2012
Eating certain veggies not only supplies key nutrients, it may also influence hormone levels and behaviors such as aggression and sexual activity, says a new study led by researchers at the University of California, Berkeley, that could shed light on the role of diet in human evolution.
A red colobus monkey prepares to munch on the bark of Eucalyptus grandis , a non-native estrogenic tree in Kibale National Park. Greater consumption of estrogenic plants is linked to altered hormone levels and changes in behavior, finds a new UC Berkeley-led study. (Julie Kearney Wasserman photo)

The research is the first to observe the connection between plant-based estrogenic compounds, or phytoestrogens, and behavior in wild primates — in this case, a group of red colobus monkeys in Uganda.

The more the male red colobus monkeys dined on the leaves of Millettia dura, a tropical tree containing estrogen-like compounds, the higher their levels of estradiol and cortisol. They also found that with the altered hormone levels came more acts of aggression and sex, and less time spent grooming — an important behavior for social bonding in primates.

The study, published in the current issue of the journal Hormones and Behavior, suggests how potentially important consuming phytoestrogens is in primate ecology and evolution.

“It’s one of the first studies done in a natural setting providing evidence that plant chemicals can directly affect a wild primate’s physiology and behavior by acting on the endocrine system,” said study lead author Michael Wasserman, who conducted the research as a graduate student at UC Berkeley’s Department of Environmental Science, Policy and Management. “By altering hormone levels and social behaviors important to reproduction and health, plants may have played a large role in the evolution of primate — including human — biology in ways that have been underappreciated.”

For 11 months, the researchers followed a group of red colobus monkeys in Uganda’s Kibale National Park and recorded what the primates ate. For behavioral observations, the researchers focused on aggression, as marked by the number of chases and fights, the frequency of mating and time spent grooming.

To assess changes in hormone levels, the researchers collected fecal samples once a week from each of 10 adult males in the group (a separate study examining phytoestrogens in females is ongoing). More than 407 samples were collected and analyzed for estradiol and cortisol levels.

The researchers found seasonal variation in the consumption of estrogenic plants, which made up 0.7 percent to as much as 32.4 percent of the red colobus diet in any given week. For red colobus adult males, higher consumption of estrogenic plants corresponded to higher levels of estradiol and cortisol, two steroid hormones important to reproduction and the stress response.

Phytoestrogens are also found in human foods, especially soy and soy-based products. Millettia dura, the tropical tree that was most important to red colobus monkey hormone levels and social behaviors, is a close relative of soy.

“With all of the concern today about phytoestrogen intake by humans through soy products, it is very useful to find out more about the exposure to such compounds in living primates and, by analogy, human ancestors,” said study co-author Katharine Milton, professor in UC Berkeley’s Department of Environmental Science, Policy and Management and an expert on the dietary ecology of primates. “This is particularly true when determining the influence of phytoestrogens on reproductive behavior, which is the whole keystone of natural selection.”

The study authors cautioned against overinterpreting the power of phytoestrogens in altering behavior, however. They emphasized that estrogenic plant consumption is just one of multiple factors influencing primate hormone levels and behavior. Notably, the primates’ own endogenous hormone levels were the stronger predictor of certain behaviors, while phytoestrogens played a secondary role.

The researchers noted that the tendency for certain behaviors to occur can be affected by complex interactions between endogenous hormones and phytoestrogens, in addition to factors such as the quality and quantity of food, competition for resources and mates and predation.

Nonetheless, previous research in laboratory and agricultural settings found that eating estrogenic plants could disrupt fertility and affect behavior in animals such as rodents, monkeys and sheep. Effects of phytoestrogen consumption in other studies have included more aggression, less body contact, more isolation, higher anxiety and impaired reproduction.

The UC Berkeley-led research is the first to observe the connection between estrogenic plant consumption and behavior in a wild primate.

To expand on this possibility, Wasserman and his colleagues are now examining the relationship between phytoestrogens and other primate species, including our closest-living relative, the chimpanzee, to determine how common estrogenic plants are in the diets of wild primates.

“Human ancestors took most of their diet from wild tropical plants, and our biology has changed little since this time, so similar relationships as those found here are expected to have occurred over our evolutionary history,” said Wasserman, now a post-doctoral scholar at McGill University’s Department of Anthropology in Montreal, Canada.

However, the researchers noted that the red colobus diet contains a high percentage of leaves, while the diet of chimpanzees, other apes and human ancestors consists primarily of fruits. Thus, one of Wasserman’s current goals is to compare the presence of phytoestrogens in wild leaves and fruits.

“If phytoestrogens make up a significant proportion of a fruit-eating primate’s diet, and that consumption has similar physiological and behavioral effects as those observed in the red colobus, then estrogenic plants likely played an important role in human evolution,” said Wasserman. “After studying the effects of phytoestrogens in apes and fruit-eating primates, we can then get a better sense of how these estrogenic compounds may influence human health and behavior.”

Other co-authors of the study are Colin Chapman and Jan Gogarten from McGill University, and Daniel Wittwer and Toni Ziegler from the Wisconsin National Primate Research Center at the University of Wisconsin-Madison.

The National Science Foundation and the International Primatological Society helped support this research.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>