Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Eating a high-fat diet may rapidly injure brain cells that control body weight

Obesity among people who eat a high-fat diet may involve injury to neurons, or nerve cells, in a key part of the brain that controls body weight, according to the authors of a new animal study. The results will be presented Tuesday at The Endocrine Society's 93rd Annual Meeting in Boston.

"The possibility that brain injury may be a consequence of the overconsumption of a typical American diet offers a new explanation for why sustained weight loss is so difficult for most obese individuals to achieve," said presenting author Joshua Thaler, MD, PhD, a faculty member with the Diabetes and Obesity Center of Excellence at the University of Washington in Seattle.

Thaler and his colleagues studied the brains of rodents for the short-term and long-term effects of eating a high-fat diet. After giving groups of six to 10 rats and mice a high-fat diet for periods from one day to eight months, the researchers performed detailed biochemical, imaging and cell sorting analyses on the animals' brains.

Within the first three days of consuming a diet that had a similar fat content to the typical American diet, rats consumed nearly double their usual daily amount of calories, Thaler reported. Rats and mice fed the high-fat diet gained weight throughout the study. These rodents developed inflammation in the hypothalamus, the part of the brain containing neurons that control body weight. At the same time, a group of support cells called glia and scavenger cells called microglia accumulated in the hypothalamus and appeared to become activated. Although this collective response to brain inflammation—called gliosis—subsided days later, it recurred after four weeks.

"Gliosis is thought to be the brain equivalent of wound healing and is typically seen in conditions of neuronal injury, such as stroke and multiple sclerosis," Thaler said. "We speculate that the early gliosis that we saw may be a protective response that fails over time."

In their experiments, Thaler said they also detected damage to, and eventual loss of, critical weight-regulating neurons. These neurons, called pro-opiomelanocortin (POMC) neurons, were reduced in number by month 8 of the high-fat diet in mice, according to Thaler. These results were not present in same-age rodents fed standard chow.

It is not yet clear whether this presumed neuronal injury is permanent, but it may contribute to weight gain, he stated.

This research, which was funded by the National Institute of Diabetes and Digestive and Kidney Diseases, provides a new potential target for obesity treatment, Thaler concluded.

"If new medicines can be designed that limit neuron injury during overeating, they may be effective in combating the obesity epidemic," he said.

Aaron Lohr | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>