Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An easy way to find a needle in a haystack by removing the haystack

18.06.2009
New mass spectrometric method allows fast and comprehensive analyses of metabolites

Researchers at the Max Planck Institute for Chemical Ecology in Jena and their colleagues from the Czech Academy of Sciences in Prague have developed a new method to quickly and reliably detect metabolites, such as sugars, fatty acids, amino acids and other organic substances from plant or animal tissue samples.

One drop of blood - less than one micro liter - is sufficient to identify certain blood related metabolites. The new technique, called MAILD, is based on classical mass spectrometry (MALDI-TOF/MS) and enables researchers to measure a large number of metabolites in biological samples, opening doors for targeted and high-throughput metabolomics. Because of its versatile applications, also in medical diagnostics, the invention is protected by patent. (Proc. Natl. Acad. Sci. USA, Early Edition, June 11, 2009).

Mass spectrometry is an analytical technique used to elucidate the molecular composition and structure of chemical compounds. In the last two decades mass spectrometry found vast applications in biology, especially for analyzing of large biomolecules. Matrix-Assisted Laser Desorption/Ionization (MALDI), wherein bio-molecules (e.g. proteins) are co-crystallized with a chemical substance called a matrix subsequently irradiated with a laser leads to the formation of protein ions which can be analyzed and detected.

However, matrices used in the MALDI technique have a substantial disadvantage: the laser beam not only forms ions from the substances of interest; it also forms low-mass ions (

Instead of improving the search for the "needles", i.e. metabolites such as sugars, fatty acids, amino acids, and other organic acids, the scientists began to alter the matrices with which the samples were applied so that no more interfering matrix-related ions were generated. In other words: they tried to remove the haystack to make the needles visible. The researchers succeeded with the help of physical and organic chemistry, based on the Brønsted-Lowry acid-base theory, and formulated conditions for rational selection of matrices that did not generate interfering ions but provided rich mass spectra of particular kinds of metabolites in real samples.

With the new experimental protocols they called "Matrix-Assisted Ionization/Laser Desorption - MAILD", the scientists were able to quickly and reliably determine more than 100 different analytes from single and small-sized samples. "The analysis of a very small plant leaf sample from Arabidopsis thaliana, in fact a circle area with a radius of just about 0.5 millimeter, revealed over a hundred analyte peaks, among which 46 metabolites could be identified. Interestingly, among them were eight of a total of eleven intermediates of the citric acid cycle, which is vital for most organisms," says Rohit Shroff, a native of India, who was a PhD student at the "International Max Planck Research School" and conducted the experiments.

The new MAILD method allows measurements from diverse biological and medical materials. Apart from plant and insect samples the scientists also studied a clinical sample: they were able to determine a wide range of blood-specific organic acids in one drop of human blood, smaller than a micro liter. In medical diagnostics such measurements are still conducted with intricate methods. If the scientists succeed in not only identifying, but also quantifying the metabolites, MAILD could develop into a fast method for medical and biological diagnostics. [JWK]

Original Publication:
Rohit Shroff, Lubomír Rulíšek, Jan Doubský, Aleš Svatoš: Acid-base-driven matrix-assisted mass spectrometry for targeted metabolomics. Proceedings of the National Academy of Sciences USA, Early Edition, June 11, 2009, doi: 10.1073/pnas.0900914106.
Further Information:
Dr. Aleš Svatoš, MPI for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena; Tel.: +49 (0)3641-571700; svatos@ice.mpg.de
Pictures:
Angela Overmeyer M.A., MPI for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena;
Tel.: 03641 - 57 2110, overmeyer@ice.mpg.de
The Max Planck Institute for Chemical Ecology
Interactions between organisms, harmful as well as beneficial, are mediated by chemical signals. The institute investigates the structure and function of molecules that regulate the interplay between plants, insects and microbes and gathers insights into growth, development, behavior, and co-evolution of plant and animal species. Results of this basic biological research are used for analysis of natural products, modern environmental research and agricultural methods. The institute has state-of-the-art research greenhouses, climate chambers, insect breeding facilities, odor detection systems, wind tunnels, neurophysiologic analysis techniques, and field stations. [JWK/AO]

Dr. Jan-Wolfhard Kellmann | idw
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>