Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's biodiversity: What do we know and where are we headed?

11.03.2011
State-of-the-art review, synthesis, new analyses and future directions of biodiversity research

Earth's biodiversity—the number of microorganisms, plants, and animals, their genes, and their ecosystems (such as rainforests and grasslands)—is declining at an alarming rate, even faster than the last mass extinction 65 million years ago. In fact, two thirds of the terrestrial species that exist today are estimated to be extinct by the end of this century. Humans are an integral part of this extensive network of life. We depend on biodiversity for goods and services; we impact biodiversity via rapidly expanding human population growth, consumption of resources, and spread of disease; and we study biodiversity in order to understand, conserve, and protect it.

To celebrate, analyze, and suggest future avenues of biodiversity research, three world-renowned scientists—Dr. Peter Raven, President Emeritus of the Missouri Botanical Garden, Dr. Jonathan Chase, from Washington University in St. Louis, MO, and Dr. J. Chris Pires, from the University of Missouri Columbia—have co-edited a Special Issue on Biodiversity, published in March by the American Journal of Botany (http://www.amjbot.org/cgi/reprint/ajb.1100055v1). Raven, Chase, and Pires overlap in their interest in biodiversity, yet their specialties complemented each other when it came to inviting "some of the best and brightest biodiversity scientists from each of [their] fields" to provide contributing papers to this issue.

Peter Raven is a long-time champion of biodiversity, drawing attention to the importance of conserving rare and endangered plant species all over the world. Jon Chase is interested in what drives patterns of species diversity in aquatic and terrestrial systems, and uses experiments as well as models and computer simulations to analyze ecological questions pertaining to biodiversity. Chris Pires's research focuses on plant evolutionary biology, from phylogenetic studies in plant diversity to genome-wide analyses of gene expression, from the molecular and gene level to the evolution and ecology of polyploidy in plants. The interests and talents of these three researchers led them to ask questions such as, "What is the Earth's current status regarding biodiversity?" and "What are our future prospects?" This unique collaboration resulted in 20 papers submitted by an international suite of biodiversity experts.

As Raven et al. are quick to point out in the Introduction to the Special Issue, a wide range of topics is presented, spanning from 150 million years ago to present (and future) day. For example, modern-day ecosystems are put into perspective by Alan Graham of the Missouri Botanical Garden, who demonstrates that today's ecosystems are a product of past events and, as such, their history can tell us something about present environmental conditions and where we might be heading. Several articles describe how many of the plant groups that we know of today arose, and their authors use modern molecular, genetic, and phylogenetic approaches to gain insights into evolutionary and developmental trends and suggest advancements in methodologies and data acquisition for future research. Other papers address the previous lack of knowledge on groups such as microorganisms and fungi and use modern molecular techniques to demonstrate the discovery of their incredible levels of biodiversity. The challenge of species identification using modern DNA techniques is also addressed—Pamela Steele and J. Chris Pires, both from the University of Missouri, propose a combination of genomes as a tool for species identification.

Other articles in the special issue focus on ecological, evolutionary, conservation, and restoration issues. Do some of the key fundamental evolutionary and ecological theories proposed a few decades ago to explain ecological relationships among species, such as Island Biogeography or the Species Area Curve, hold up now that we have acquired more data with which to test them? These issues are examined at local and global spatial scales and fine-tune, as well as provide interesting twists, on these fundamental theories. For example, Jana and Steven Vamosi from the University of Calgary, examined patterns of angiosperm diversity around the world and concluded that one of the key mechanisms to angiosperm diversification is the amount of area available—area can limit the carrying capacity per se of a species' lineage. Several articles review the literature or use mathematical models or meta-analyses to examine patterns of diversity at the local (alpha-diversity) or regional (beta-diversity) scale, from plant-pollinator interactions to networks of networks, to describe how habitat transformation or loss can not only impact the number of species, but can break down ecosystem functions and services, and point out areas of research for the future that will provide us with a deeper understanding of biodiversity, especially within the context of global climate change, habitat loss, and biological invasions.

This Special Issue on Biodiversity has articles that should be of interest to a wide audience, from the budding conservationist to professionals on the cutting edge of their field. These articles provide up-to-date analyses of many aspects of biodiversity and should stimulate the direction of up-and-coming research in their various fields.

###

CITATION: Raven, Peter H., Jonathan M. Chase, and J. Chris Pires (2011). Introduction to special issue on biodiversity. American Journal of Botany 98(3): 333-335. DOI: 10.3732/ajb.1100055

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/cgi/reprint/ajb.1100055v1. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The American Journal of Botany's Special Issue on Biodiversity was co-edited by Peter H. Raven, Jonathan M. Chase, and J. Chris Pires. Peter H. Raven is President Emeritus of the Missouri Botanical Garden and one of the world's leading botanists and advocates of conservation and biodiversity. Described by TIME magazine as a "Hero for the Planet," Dr. Raven champions research around the world to preserve endangered plants and is a leading advocate for conservation and a sustainable environment. Jonathan M. Chase is a professor in the Department of Biology and Director of the Tyson Research Center at Washington University in St. Louis, MO. His specific research interests currently center around understanding patterns of biodiversity. J. Chris Pires is assistant professor in the Division of Biological Sciences at the University of Missouri Columbia in Columbia, MO. He devotes his research to plant evolutionary biology and is part of MU's Interdisciplinary Plant Group.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>