Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early History of Genetics Revised

03.05.2011
Scientists from Jena and Prague come to astonishing conclusions in the Mendel-Research

The early history of genetics has to be re-written in the light of new findings. Scientists from the University Jena (Germany) in co-operation with colleagues from Prague found out that the traditional history of the 'rediscovery' of Gregor Johann Mendel's laws of heredity in 1900 has to be adjusted and some facets have to be added.

It all began in the year of 1865: Mendel, today known as the 'father of genetics', published his scientific findings about the cross breeding experiments of peas, that went largely unnoticed during his lifetime. His research notes and manuscripts disappeared after Mendel‘s death in 1884. Only about 1900 three scientists ‘rediscovered’ the later so called Mendel's laws: the Dutch biologist Hugo de Vries, the German plant geneticist Carl Correns, and the Austrian plant breeder Erich von Tschermak-Seysenegg.

“For 110 years many believed it to be like that,“ says Prof. Dr. Uwe Hoßfeld, leader of the Research Group Didactics of Biology of the University Jena. “But in reality there were four direct protagonists, ‘rediscoverers’ of Mendel's laws“ as the historians of science and biologists found out recently. Moreover it was assumed that the research went on in parallel and independently. “The so far unknown and now edited correspondence of the brothers Armin und Erich von Tschermak-Seysenegg from 1898-1901 leads to a correction of the former assumption,“ according to Dr. Michal Simunek. Amongst other things the researchers could prove that some of the scientists should indeed exchange plant seeds and corresponded about the research results in their letters.

Recently two volumes dealing with selected problems of the early Mendel research from the scientific series 'Studies in the History of Sciences and Humanities' have been published. Volume No. 27 for the first time releases the so far unknown personal correspondence from the period between 1898-1951 of the brothers Armin and Erich von Tschermak-Seysenegg, the former being physiologist and the latter a plant breeder. The vast majority of them has been identified by Dr. Simunek in the family possession of Armin's grandson, Dr. Armin Tschermak von Seysenegg Jr. From 1900 Armin Tschermak von Seysenegg presented several writings which show that apart from de Vries and Correns his younger brother Erich took part in the research about Mendel's laws. However he excluded himself from the ranks of the so-called rediscoverers in spite of his active participation in the events of 1900 and 1901.

What were the reasons? Why did he step back and leave all the glory to his younger brother Erich? “The two of them were tied by such an unusual brotherly love that is otherwise rare amongst scientists,“ Hoßfeld reports on one possible reason. Erich took the credit as the ‘rediscoverer’ for a long time. He died in 1962. Armin, who died ten years earlier, however remained unknown person about these particular achievements to the public and thus allowed his brother's to overshadow him. At the same time the eye physiologist and later professor in Prague seemed to contribute especially as far as the statistical analysis concerned. Armin was widely interested in the subject of Mendel's laws (especially in the numeric ratio). Therefore his younger brother extensively consulted him on these problems. It can be assumed that the papers Erich Tschermak von Seysenegg presented in 1900 and 1901 respectively about the 'rediscovery' were actually the results of an intense co-operation with his older brother Armin. It is difficult though to reconstruct the whole amount of this fraternal teamwork as there are only a few of the older brother's letters still surviving. “After these new findings the traditional view of the early history of genetics has to be reviewed,“ both scientists are sure.

The second contribution to the history of the Gregor J. Mendel related research (Volume No. 28) contains the correspondence of Mendel's first biographers, among them Willam Bateson, Hugo Iltis and Erich Tschermak von Seysenegg, with Mendel's two nephews, Dr. Alois and Ferdinand Schindler, from the period between 1902-35. After 1900 the nephews became the most important sources for the biographical portrayal of Gregor J. Mendel. Their writings are mostly concerned with the family history and the last part of Mendel's life. This correspondence is published in such comprehensive volume for the first time.

In the German Research Council project about the early history of genetics in Bohemia and Moravia, Jena scientists co-operated with researchers from the Academy of Sciences in Prague as well as the Moravian Museum in Brno.

Bibliography:
Michal Simunek, Uwe Hoßfeld, Florian Thümmler, Olaf Breidbach (Eds.): The Mendelian Dioskuri – Correspondence of Armin with Erich von Tschermak-Seysenegg, 1898-1951; „Studies in the History of Sciences and Humanities“, Vol. No. 27; Prag 2011; ISBN 978-80-87378-67-0

Michal Simunek, Uwe Hoßfeld, Florian Thümmler, Jirí Sekerák (Eds.): The Letters on G. J. Mendel – Correspondence of William Bateson, Hugo Iltis, and Erich von Tschermak-Seysenegg with Alois and Ferdinand Schindler, 1902-1935; „Studies in the History of Sciences and Humanities“, Vol. No. 28; Prag 2011; ISBN 978-80-87378-73-1

Contact Details:
Prof. Dr. Uwe Hoßfeld
Research Group Didactics of Biology of the Friedrich Schiller University Jena
Am Steiger 3
D-07743 Jena
Phone: ++49 (0)3641 949491
Email: Uwe.Hossfeld[at]uni-jena.de

Julia Piontek | idw
Further information:
http://www.uni-jena.de/en/start_en.html

Further reports about: Didactics German language Humanities research synthetic biology

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>