Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early History of Genetics Revised

03.05.2011
Scientists from Jena and Prague come to astonishing conclusions in the Mendel-Research

The early history of genetics has to be re-written in the light of new findings. Scientists from the University Jena (Germany) in co-operation with colleagues from Prague found out that the traditional history of the 'rediscovery' of Gregor Johann Mendel's laws of heredity in 1900 has to be adjusted and some facets have to be added.

It all began in the year of 1865: Mendel, today known as the 'father of genetics', published his scientific findings about the cross breeding experiments of peas, that went largely unnoticed during his lifetime. His research notes and manuscripts disappeared after Mendel‘s death in 1884. Only about 1900 three scientists ‘rediscovered’ the later so called Mendel's laws: the Dutch biologist Hugo de Vries, the German plant geneticist Carl Correns, and the Austrian plant breeder Erich von Tschermak-Seysenegg.

“For 110 years many believed it to be like that,“ says Prof. Dr. Uwe Hoßfeld, leader of the Research Group Didactics of Biology of the University Jena. “But in reality there were four direct protagonists, ‘rediscoverers’ of Mendel's laws“ as the historians of science and biologists found out recently. Moreover it was assumed that the research went on in parallel and independently. “The so far unknown and now edited correspondence of the brothers Armin und Erich von Tschermak-Seysenegg from 1898-1901 leads to a correction of the former assumption,“ according to Dr. Michal Simunek. Amongst other things the researchers could prove that some of the scientists should indeed exchange plant seeds and corresponded about the research results in their letters.

Recently two volumes dealing with selected problems of the early Mendel research from the scientific series 'Studies in the History of Sciences and Humanities' have been published. Volume No. 27 for the first time releases the so far unknown personal correspondence from the period between 1898-1951 of the brothers Armin and Erich von Tschermak-Seysenegg, the former being physiologist and the latter a plant breeder. The vast majority of them has been identified by Dr. Simunek in the family possession of Armin's grandson, Dr. Armin Tschermak von Seysenegg Jr. From 1900 Armin Tschermak von Seysenegg presented several writings which show that apart from de Vries and Correns his younger brother Erich took part in the research about Mendel's laws. However he excluded himself from the ranks of the so-called rediscoverers in spite of his active participation in the events of 1900 and 1901.

What were the reasons? Why did he step back and leave all the glory to his younger brother Erich? “The two of them were tied by such an unusual brotherly love that is otherwise rare amongst scientists,“ Hoßfeld reports on one possible reason. Erich took the credit as the ‘rediscoverer’ for a long time. He died in 1962. Armin, who died ten years earlier, however remained unknown person about these particular achievements to the public and thus allowed his brother's to overshadow him. At the same time the eye physiologist and later professor in Prague seemed to contribute especially as far as the statistical analysis concerned. Armin was widely interested in the subject of Mendel's laws (especially in the numeric ratio). Therefore his younger brother extensively consulted him on these problems. It can be assumed that the papers Erich Tschermak von Seysenegg presented in 1900 and 1901 respectively about the 'rediscovery' were actually the results of an intense co-operation with his older brother Armin. It is difficult though to reconstruct the whole amount of this fraternal teamwork as there are only a few of the older brother's letters still surviving. “After these new findings the traditional view of the early history of genetics has to be reviewed,“ both scientists are sure.

The second contribution to the history of the Gregor J. Mendel related research (Volume No. 28) contains the correspondence of Mendel's first biographers, among them Willam Bateson, Hugo Iltis and Erich Tschermak von Seysenegg, with Mendel's two nephews, Dr. Alois and Ferdinand Schindler, from the period between 1902-35. After 1900 the nephews became the most important sources for the biographical portrayal of Gregor J. Mendel. Their writings are mostly concerned with the family history and the last part of Mendel's life. This correspondence is published in such comprehensive volume for the first time.

In the German Research Council project about the early history of genetics in Bohemia and Moravia, Jena scientists co-operated with researchers from the Academy of Sciences in Prague as well as the Moravian Museum in Brno.

Bibliography:
Michal Simunek, Uwe Hoßfeld, Florian Thümmler, Olaf Breidbach (Eds.): The Mendelian Dioskuri – Correspondence of Armin with Erich von Tschermak-Seysenegg, 1898-1951; „Studies in the History of Sciences and Humanities“, Vol. No. 27; Prag 2011; ISBN 978-80-87378-67-0

Michal Simunek, Uwe Hoßfeld, Florian Thümmler, Jirí Sekerák (Eds.): The Letters on G. J. Mendel – Correspondence of William Bateson, Hugo Iltis, and Erich von Tschermak-Seysenegg with Alois and Ferdinand Schindler, 1902-1935; „Studies in the History of Sciences and Humanities“, Vol. No. 28; Prag 2011; ISBN 978-80-87378-73-1

Contact Details:
Prof. Dr. Uwe Hoßfeld
Research Group Didactics of Biology of the Friedrich Schiller University Jena
Am Steiger 3
D-07743 Jena
Phone: ++49 (0)3641 949491
Email: Uwe.Hossfeld[at]uni-jena.de

Julia Piontek | idw
Further information:
http://www.uni-jena.de/en/start_en.html

Further reports about: Didactics German language Humanities research synthetic biology

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>