Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early disease diagnosis could be dramatically improved with new detection system

21.12.2017

The presence of, or changes in the concentration of, certain proteins in biological fluids can be indicators of disease. However, in the early stages of disease these 'biomarkers' can be difficult to detect, as they are relatively rare.

Detecting important biomarkers in lower concentrations will allow patients to be treated earlier for diseases such as some cancers and neurological disorders, which could increase the chance of survival rate.


This is an illustration of the system in action.

Credit: Joshua Edel/Imperial College London

However, current methods of detection are often not sufficiently sensitive and require costly and time-consuming sample pre-treatment.

Now, researchers from the Department of Chemistry at Imperial College London have come up with a system that is specific, flexible, and can detect single protein biomarkers directly in human serum (a pool of fluid separated from blood).

The system represents a significant innovation, as it is more sensitive to specific biomarkers and does not require clinical sample preparation. The method is published in Nature Communications.

Dr Alex Ivanov, co-leader of this study from the Department of Chemistry at Imperial, said: "The detection of single molecules of biomarkers represents the ultimate in sensitivity for early diagnosis. We have now shown that this is possible to perform such measurements in real human samples, opening up the potential for meaningful early diagnosis."

The method the team developed uses the 'backbone' of DNA, the structure it is built around. They grafted 'aptamers' - synthetic DNA molecules that bind to specific target biomarkers - to DNA backbones.

When added to human serum, the aptamers bind to biomarkers before being analysed by passing through a nanopore detector. Nanopores are miniscule holes (often as small as a few billionths of a meter) that measure a change in electrical current as molecules pass through them. Each biomarker has a unique current signature, so the presence and concentration of target biomarkers can be analysed in this way.

The team demonstrated that their system can work by testing three aptamers on one DNA backbone. They found that the nanopores can detect the specific biomarkers that the aptamers were designed to pick up.

They say that the system can be constructed with more than five different aptamers, allowing detection of multiple biomarkers at once. In addition, the biomarkers were detected in human serum, meaning far less preparation time and cost were needed.

Based on the preliminary findings of this study, research efforts are now focused on several types of cancer and neurological disorders, which can benefit from the detection of biomarkers that are in low abundance in clinical samples.

The team have filed a patent for the technology, and are currently exploring routes towards commercialisation so that it can be used to ultimately improve quality of life.

Dr Jasmine Sze, who completed this study as part of her PhD in the Department of Chemistry and has recently moved to the IMED Biotech at AstraZeneca said "Looking forward, with the rapid growth in nanotechnology and nanopore technology, this innovative platform could pave the way for the next wave of clinical applications.

"It has great potential for biomarker discovery, development of companion diagnostics as well as clinical endeavours, such as direct diagnosis, prognosis and sub-type classification with single-molecule sensitivity."

Hayley Dunning | EurekAlert!

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>