Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early biomarker for pancreatic cancer identified

15.05.2012
Researchers at the University of California, San Diego School of Medicine and Moores Cancer Center have identified a new biomarker and therapeutic target for pancreatic cancer, an often-fatal disease for which there is currently no reliable method for early detection or therapeutic intervention. The paper will be published May 15 in Cancer Research.

Pancreatic ductal adenocarcinoma, or PDAC, is the fourth-leading cause of cancer-related death. Newly diagnosed patients have a median survival of less than one year, and a 5-year survival rate of only 3 to 5 percent. Therefore, biomarkers that can identify early onset of PDAC and which could be viable drug targets are desperately needed.

'"We found that a kinase called PEAK1 is turned on very early in pancreatic cancer," said first author Jonathan Kelber, PhD, a postdoctoral researcher in the UCSD Department of Pathology and Moores Cancer Center. "This protein was clearly detected in biopsies of malignant tumors from human patients – at the gene and the protein levels – as well as in mouse models."

PEAK1 is a type of tyrosine kinase – an enzyme, or type of protein, that speeds up chemical reactions and acts as an "on" or "off" switch in many cellular functions. The fact that PEAK1 expression is increased in human PDAC and that its catalytic activity is important for PDAC cell proliferation makes it an important candidate as a biomarker and therapeutic target for small molecule drug discovery.

In addition to showing that levels of PEAK1 are increased during PDAC progression, the scientists found that PEAK1 is necessary for the cancer to grow and metastasize.

"PEAK1 is a critical signaling hub, regulating cell migration and proliferation," said Kelber. "We found that if you knock it out in PDAC cells, they form significantly smaller tumors in preclinical mouse models and fail to metastasize efficiently."

The research team, led by principal investigator Richard Klemke, PhD, UCSD professor of pathology, studied a large, on-line data base of gene expression profiles to uncover the presence of PEAK1 in PDAC. These findings were corroborated at the protein level in patient biopsy samples from co-investigator Michael Bouvet, MD, and in mouse models developed by Andrew M. Lowy, MD, both of the UCSD Department of Surgery at Moores Cancer Center.

While many proteins are upregulated in cancers of the pancreas, there has been limited success in identifying candidates that, when inhibited, have potential as clinically approved therapeutics. However, the researchers found that inhibition of PEAK1-dependent signaling sensitized PDAC cells to existing chemotherapies such as Gemitabine, and immunotherapies such as Trastuzumab.

"Survival rates for patients with pancreatic cancer remain low," said Bouvet. "Therefore, earlier detection and novel treatment strategies are very important if we are going to make any progress against pancreatic cancer. Since current therapies are often ineffective, our hope is that the findings from this research will open up a new line of investigation to bring a PEAK1 inhibitor to the clinic."

Additional contributors to the study include Theresa Reno, Sharmeela Kaushal, Cristina Metildi,Tracy Wright, Konstantin Stoletov, Jessica M. Weems, Frederick D. Park, Evangeline Mose, UC San Diego; Yingchun Wang, Chinese Academy of Science, Beijing; and Robert M. Hoffman, UC San Diego and AntiCancer, Inc., San Diego.

The study was supported by the National Institutes of Health.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Cancer PDAC PEAK1 UCSD cellular function chemical reaction mouse model pancreatic cancer

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>