Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early biomarker for pancreatic cancer identified

Researchers at the University of California, San Diego School of Medicine and Moores Cancer Center have identified a new biomarker and therapeutic target for pancreatic cancer, an often-fatal disease for which there is currently no reliable method for early detection or therapeutic intervention. The paper will be published May 15 in Cancer Research.

Pancreatic ductal adenocarcinoma, or PDAC, is the fourth-leading cause of cancer-related death. Newly diagnosed patients have a median survival of less than one year, and a 5-year survival rate of only 3 to 5 percent. Therefore, biomarkers that can identify early onset of PDAC and which could be viable drug targets are desperately needed.

'"We found that a kinase called PEAK1 is turned on very early in pancreatic cancer," said first author Jonathan Kelber, PhD, a postdoctoral researcher in the UCSD Department of Pathology and Moores Cancer Center. "This protein was clearly detected in biopsies of malignant tumors from human patients – at the gene and the protein levels – as well as in mouse models."

PEAK1 is a type of tyrosine kinase – an enzyme, or type of protein, that speeds up chemical reactions and acts as an "on" or "off" switch in many cellular functions. The fact that PEAK1 expression is increased in human PDAC and that its catalytic activity is important for PDAC cell proliferation makes it an important candidate as a biomarker and therapeutic target for small molecule drug discovery.

In addition to showing that levels of PEAK1 are increased during PDAC progression, the scientists found that PEAK1 is necessary for the cancer to grow and metastasize.

"PEAK1 is a critical signaling hub, regulating cell migration and proliferation," said Kelber. "We found that if you knock it out in PDAC cells, they form significantly smaller tumors in preclinical mouse models and fail to metastasize efficiently."

The research team, led by principal investigator Richard Klemke, PhD, UCSD professor of pathology, studied a large, on-line data base of gene expression profiles to uncover the presence of PEAK1 in PDAC. These findings were corroborated at the protein level in patient biopsy samples from co-investigator Michael Bouvet, MD, and in mouse models developed by Andrew M. Lowy, MD, both of the UCSD Department of Surgery at Moores Cancer Center.

While many proteins are upregulated in cancers of the pancreas, there has been limited success in identifying candidates that, when inhibited, have potential as clinically approved therapeutics. However, the researchers found that inhibition of PEAK1-dependent signaling sensitized PDAC cells to existing chemotherapies such as Gemitabine, and immunotherapies such as Trastuzumab.

"Survival rates for patients with pancreatic cancer remain low," said Bouvet. "Therefore, earlier detection and novel treatment strategies are very important if we are going to make any progress against pancreatic cancer. Since current therapies are often ineffective, our hope is that the findings from this research will open up a new line of investigation to bring a PEAK1 inhibitor to the clinic."

Additional contributors to the study include Theresa Reno, Sharmeela Kaushal, Cristina Metildi,Tracy Wright, Konstantin Stoletov, Jessica M. Weems, Frederick D. Park, Evangeline Mose, UC San Diego; Yingchun Wang, Chinese Academy of Science, Beijing; and Robert M. Hoffman, UC San Diego and AntiCancer, Inc., San Diego.

The study was supported by the National Institutes of Health.

Debra Kain | EurekAlert!
Further information:

Further reports about: Cancer PDAC PEAK1 UCSD cellular function chemical reaction mouse model pancreatic cancer

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>