Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earliest modern human sequenced

22.10.2014

Researchers discover fragments of Neandertal DNA in the genome of a 45,000-year-old modern human from Siberia

A research team led by Svante Pääbo of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has sequenced the genome of a 45,000-year-old modern human male from western Siberia.


Map of Pleistocene fossils with published nuclear DNA (orange: Neandertals, blue: Denisovans, green: modern humans).

© MPI for Evolutionary Anthropology/ Bence Viola


View of the Irtysh and Ust’-Ishim village in September 2014.

© Vyacheslav Andreev

The comparison of his genome to the genomes of people that lived later in Europe and Asia show that he lived close in time to when the ancestors of present-day people in Europe and eastern Asia went different ways. Like all present-day people outside Africa the Ust’-Ishim man carried segments of Neandertal DNA in his genome.

But these segments were much longer than the ones found in present-day humans and indicate that the admixture with Neandertals took place between 50,000 and 60,000 years ago.

In 2008, a relatively complete human femur was discovered on the banks of the river Irtysh near the village of Ust’-Ishim in western Siberia. Radiocarbon dating of the bone showed it to be about 45,000 years old.

“The morphology of the bone suggests that it is an early modern human; that is an individual related to populations that are the direct ancestors of people alive today” says Bence Viola, an anthropologist who analyzed it. “This individual is one of the oldest modern humans found outside the Middle East and Africa” he says.

The research team sequenced this individual’s genome to a very high quality and compared it to the genomes of present-day humans from more than 50 populations. They found that the Ust’-Ishim bone comes from a male individual who is more related to present-day people outside Africa than to Africans thus showing that he is an early representative of the modern population that left Africa.

When his genome was compared to people outside Africa, he was found to be approximately equally related to people in East Asia and people that lived in Europe during the Stone Age. “The population to which the Ust’-Ishim individual belonged may have split from the ancestors of present-day West Eurasian and East Eurasian populations before, or at about the same time, when these two first split from each other”, says Svante Pääbo. 

“It is very satisfying that we now have a good genome not only from Neandertals and Denisovans, but also from a very early modern human” he says. Paleoanthropologist Jean-Jacques Hublin, who was involved in the study, says that “it is possible that the Ust’-Ishim individual belonged to a population of early migrants into Europe and Central Asia, who failed to leave descendants among present-day populations”.

Since the Ust’-Ishim man lived at a time when Neandertals were still present in Eurasia, the researchers were interested in seeing whether his ancestors had already mixed with Neandertals. They found that about two per cent of his DNA came from Neandertals – similar to the proportion found in present-day East Asians and Europeans.

However, the lengths of Neandertal DNA segments in his genome are much longer than the ones found in present-day humans because he lived closer in time to the admixture event so that the Neandertal segments had not had time to become as reduced in size over the generations.

“This allowed us to estimate that the ancestors of the Ust’-Ishim individual mixed with Neandertals approximately 7,000-13,000 years before this individual lived or about 50,000 to 60,000 years ago, which is close to the time of the major expansion of modern humans out of Africa and the Middle East”, says Janet Kelso, who led the computer-based analyses of the genome.

The high quality of this 45,000-year-old genome also enabled the team to estimate the rate with which mutations accumulate in the human genome. They found that between one and two mutations per year have accumulated in the genomes of populations in Europe and Asia since the Ust’-Ishim man lived.

This is similar to recent estimates from counting genetic differences between parents and children, but lower than more traditional, indirect estimates based on fossil divergences between species.

Contact 

 

Prof. Dr. Svante Pääbo

Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone:+49 341 3550-500Fax:+49 341 3550-555
 

Sandra Jacob

Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone:+49 341 3550-122Fax:+49 341 3550-119

Original publication

 
Qiaomei Fu, Heng Li, Priya Moorjani, Flora Jay, Sergey M. Slepchenko, Aleksei A. Bondarev, Philip L.F. Johnson, Ayinuer A. Petri, Kay Prüfer, Cesare de Filippo, Matthias Meyer, Nicolas Zwyns, Domingo C. Salazar-Garcia, Yaroslav V. Kuzmin, Susan G. Keates, Pavel A. Kosintsev, Dmitry I. Razhev, Michael P. Richards, Nikolai V. Peristov, Michael Lachmann, Katerina Douka, Thomas F.G. Higham, Montgomery Slatkin, Jean-Jacques Hublin, David Reich, Janet Kelso, T. Bence Viola, Svante Pääbo
The genome sequence of a 45,000-year-old modern human from western Siberia

Janet Kelso | Max-Planck-Institute
Further information:
http://www.mpg.de/8710423/genome-earliest-modern-human

Further reports about: Evolutionary Max Planck Institute Neandertals ancestors humans populations segments

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>