Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earliest modern human sequenced

22.10.2014

Researchers discover fragments of Neandertal DNA in the genome of a 45,000-year-old modern human from Siberia

A research team led by Svante Pääbo of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has sequenced the genome of a 45,000-year-old modern human male from western Siberia.


Map of Pleistocene fossils with published nuclear DNA (orange: Neandertals, blue: Denisovans, green: modern humans).

© MPI for Evolutionary Anthropology/ Bence Viola


View of the Irtysh and Ust’-Ishim village in September 2014.

© Vyacheslav Andreev

The comparison of his genome to the genomes of people that lived later in Europe and Asia show that he lived close in time to when the ancestors of present-day people in Europe and eastern Asia went different ways. Like all present-day people outside Africa the Ust’-Ishim man carried segments of Neandertal DNA in his genome.

But these segments were much longer than the ones found in present-day humans and indicate that the admixture with Neandertals took place between 50,000 and 60,000 years ago.

In 2008, a relatively complete human femur was discovered on the banks of the river Irtysh near the village of Ust’-Ishim in western Siberia. Radiocarbon dating of the bone showed it to be about 45,000 years old.

“The morphology of the bone suggests that it is an early modern human; that is an individual related to populations that are the direct ancestors of people alive today” says Bence Viola, an anthropologist who analyzed it. “This individual is one of the oldest modern humans found outside the Middle East and Africa” he says.

The research team sequenced this individual’s genome to a very high quality and compared it to the genomes of present-day humans from more than 50 populations. They found that the Ust’-Ishim bone comes from a male individual who is more related to present-day people outside Africa than to Africans thus showing that he is an early representative of the modern population that left Africa.

When his genome was compared to people outside Africa, he was found to be approximately equally related to people in East Asia and people that lived in Europe during the Stone Age. “The population to which the Ust’-Ishim individual belonged may have split from the ancestors of present-day West Eurasian and East Eurasian populations before, or at about the same time, when these two first split from each other”, says Svante Pääbo. 

“It is very satisfying that we now have a good genome not only from Neandertals and Denisovans, but also from a very early modern human” he says. Paleoanthropologist Jean-Jacques Hublin, who was involved in the study, says that “it is possible that the Ust’-Ishim individual belonged to a population of early migrants into Europe and Central Asia, who failed to leave descendants among present-day populations”.

Since the Ust’-Ishim man lived at a time when Neandertals were still present in Eurasia, the researchers were interested in seeing whether his ancestors had already mixed with Neandertals. They found that about two per cent of his DNA came from Neandertals – similar to the proportion found in present-day East Asians and Europeans.

However, the lengths of Neandertal DNA segments in his genome are much longer than the ones found in present-day humans because he lived closer in time to the admixture event so that the Neandertal segments had not had time to become as reduced in size over the generations.

“This allowed us to estimate that the ancestors of the Ust’-Ishim individual mixed with Neandertals approximately 7,000-13,000 years before this individual lived or about 50,000 to 60,000 years ago, which is close to the time of the major expansion of modern humans out of Africa and the Middle East”, says Janet Kelso, who led the computer-based analyses of the genome.

The high quality of this 45,000-year-old genome also enabled the team to estimate the rate with which mutations accumulate in the human genome. They found that between one and two mutations per year have accumulated in the genomes of populations in Europe and Asia since the Ust’-Ishim man lived.

This is similar to recent estimates from counting genetic differences between parents and children, but lower than more traditional, indirect estimates based on fossil divergences between species.

Contact 

 

Prof. Dr. Svante Pääbo

Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone:+49 341 3550-500Fax:+49 341 3550-555
 

Sandra Jacob

Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone:+49 341 3550-122Fax:+49 341 3550-119

Original publication

 
Qiaomei Fu, Heng Li, Priya Moorjani, Flora Jay, Sergey M. Slepchenko, Aleksei A. Bondarev, Philip L.F. Johnson, Ayinuer A. Petri, Kay Prüfer, Cesare de Filippo, Matthias Meyer, Nicolas Zwyns, Domingo C. Salazar-Garcia, Yaroslav V. Kuzmin, Susan G. Keates, Pavel A. Kosintsev, Dmitry I. Razhev, Michael P. Richards, Nikolai V. Peristov, Michael Lachmann, Katerina Douka, Thomas F.G. Higham, Montgomery Slatkin, Jean-Jacques Hublin, David Reich, Janet Kelso, T. Bence Viola, Svante Pääbo
The genome sequence of a 45,000-year-old modern human from western Siberia

Janet Kelso | Max-Planck-Institute
Further information:
http://www.mpg.de/8710423/genome-earliest-modern-human

Further reports about: Evolutionary Max Planck Institute Neandertals ancestors humans populations segments

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>