Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earlier detection of bone loss may be in future

29.05.2012
Are your bones getting stronger or weaker? Right now, it's hard to know.

Scientists at Arizona State University and NASA are taking on this medical challenge by developing and applying a technique that originated in the Earth sciences. In a new study, this technique was more sensitive in detecting bone loss than the X-ray method used today, with less risk to patients. Eventually, it may find use in clinical settings, and could pave the way for additional innovative biosignatures to detect disease.

"Osteoporosis, a disease in which bones grow weaker, threatens more than half of Americans over age 50," explained Ariel Anbar, a professor in ASU's Department of Chemistry and Biochemistry and the School of Earth and Space Exploration, and senior author of the study.

"Bone loss also occurs in a number of cancers in their advanced stages. By the time these changes can be detected by X-rays, as a loss of bone density, significant damage has already occurred," Anbar said. "Also, X-rays aren't risk-free. We think there might be a better way."

With the new technique, bone loss is detected by carefully analyzing the isotopes of the chemical element calcium that are naturally present in urine. Isotopes are atoms of an element that differ in their masses. Patients do not need to ingest any artificial tracers and are not exposed to any radiation, so there is virtually no risk, the authors noted.

The findings are presented in a paper published in the online Early Edition of the Proceedings of the National Academy of Sciences (PNAS) the week of May 28. It is titled "Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes."

"The paper suggests an exciting new approach to the problem," said Dr. Rafael Fonseca, chair of the Department of Medicine at the Mayo Clinic in Arizona, and a specialist in the bone-destroying disease multiple myeloma. Fonseca was not associated with the study but is partnering with the ASU team on collaborative research based on the findings.

"Right now, pain is usually the first indication that cancer is affecting bones. If we could detect it earlier by an analysis of urine or blood in high-risk patients, it could significantly improve their care," Fonseca said.

The new technique makes use of a fact well known to Earth scientists, but seldom used in biomedicine: Different isotopes of a chemical element can react at slightly different rates. When bones form, the lighter isotopes of calcium enter bone a little faster than the heavier isotopes. That difference, called "isotope fractionation," is the key.

"Instead of isotopes of calcium, think about jelly beans," explained Jennifer Morgan, lead author of the study. "We all have our favorite. Imagine a huge pile of jelly beans with equal amounts of six different kinds. You get to make your own personal pile, picking out the ones you want. Maybe you pick two black ones for every one of another color because you really like licorice. It's easy to see that your pile will wind up with more black jelly beans than any other color. Therefore, the ratio of black to red or black to green will be higher in your pile than in the big one. That's similar to what happens with calcium isotopes when bones form. Bone favors lighter calcium isotopes and picks them over the heavier ones."

Other factors, especially bone destruction, also come into play, making the human body more complicated than the jelly bean analogy. But 15 years ago, corresponding author Joseph Skulan, now an adjunct professor at ASU, combined all the factors into a mathematical model that predicted that calcium isotope ratios in blood and urine should be extremely sensitive to bone mineral balance.

"Bone is continuously being formed and destroyed," Skulan explained. "In healthy, active humans, these processes are in balance. But if a disease throws the balance off then you ought to see a shift in the calcium isotope ratios."

The predicted effect on calcium isotopes is very small, but can be measured using sensitive mass spectrometry methods developed by Morgan as part of her doctoral work with Anbar, Skulan and co-author Gwyneth Gordon, an associate research scientist in the W.M. Keck Foundation Laboratory for Environmental Biogeochemistry at ASU. Co-author Stephen Romaniello, currently a doctoral student with Anbar at ASU, contributed an updated mathematical model.

The new study, funded by NASA, examined calcium isotopes in the urine of a dozen healthy subjects confined to bed ("bed rest") for 30 days at the University of Texas Medical Branch at Galveston's Institute for Translational Sciences–Clinical Research Center. Whenever a person lies down, the weight-bearing bones of the body, such as those in the spine and leg, are relieved of their burden, a condition known as "skeletal unloading". With skeletal unloading, bones start to deteriorate due to increased destruction. Extended periods of bed rest induce bone loss similar to that experienced by osteoporosis patients, and astronauts.

"NASA conducts these studies because astronauts in microgravity experience skeletal unloading and suffer bone loss," said co-author Scott M. Smith, NASA nutritionist. "It's one of the major problems in human spaceflight, and we need to find better ways to monitor and counteract it. But the methods used to detect the effects of skeletal unloading in astronauts are also relevant to general medicine."

Lab analysis of the subjects' urine samples at ASU revealed that the new technique can detect bone loss after as little as one week of bed rest, long before changes in bone density are detectable by the conventional approach, dual-energy X-ray absorptiometry (DEXA).

Importantly, it is the only method, other than DEXA, that directly measures net bone loss.

"What we really want to know is whether the amount of bone in the body is increasing or decreasing", said Morgan.

Calcium isotope measurements seem poised to assume an important role in detecting bone disease – in space, and on Earth. The team is working now to evaluate the technique in samples from cancer patients.

"This is a 'proof-of-concept' paper," explained Anbar "We showed that the concept works as expected in healthy people in a well-defined experiment. The next step is to see if it works as expected in patients with bone-altering diseases. That would open the door to clinical applications."

However, the concept extends even beyond bone and calcium, the authors noted. Many diseases may cause subtle changes in element isotope abundances, or in the concentrations of elements. These sorts of signatures have not been systematically explored in the development of biosignatures of cancers and other diseases.

"The concept of inorganic signatures represents a new and exciting approach to diagnosing, treating and monitoring complex diseases such as cancer," stated Anna Barker, director of Transformative Healthcare Networks and co-director of the Complex Adaptive Systems Initiative in the Office of Knowledge Enterprise Development at ASU. Barker, who came to ASU after being deputy director of the National Cancer Institute, emphasized the simplicity of the approach compared to the challenges of deciphering complex genome-derived data, adding "there is an opportunity to create an entirely new generation of diagnostics for cancer and other diseases."

The National Aeronautics and Space Administration Human Research Program and specifically the Human Health and Countermeasures Element and the Flight Analogs Project supported this work. Bed rest studies were supported in part by the National Center for Research Resources, National Institutes of Health.

ARIZONA STATE UNIVERSITY (http://www.asu.edu)

Department of Chemistry/Biochemistry (http://chemistry.asu.edu)
School of Earth and Space Exploration (http://sese.asu.edu)
Research Matters (http://researchmatters.asu.edu)
Tempe, Arizona USA

Carol Hughes | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>