Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Little E/Z Changes Make a Big Difference

01.07.2010
Sex pheromone production in European corn borer races explored. Tracking the origin of new species

The coming of summer brings promise for humans and insects alike. The farmer planted maize for a bountiful harvest, but the European Corn Borer (ECB) is looking for a good meal right away. The caterpillars of this pest bore deep into the maize stems, where they eat the inner pith causing the weakened stalks to fall over before the ears can ripen. As if one pest were not bad enough, there are even two different races, called E and Z that have a subtle difference in the shape of their pheromones.

Interfering with the pheromone communication system of pest insects is a promising means of crop protection. But for years the E/Z distinction, so obvious to the insects, has baffled researchers. Now a team of scientists from Lund University in Sweden and the Max Planck Institute for Chemical Ecology in Jena, Germany, have identified the gene that makes E and Z females produce their respective pheromones, causing a reproductive isolation that could eventually lead to formation of new species.

(NATURE, Advance Online Publication, 30.6.2010, DOI 10.1038/nature09058)

All over the world farmers fight the ECB with insecticides, genetically modified plants, or biological pest control. The moth with the scientific name Ostrinia nubilalis is native to Europe and was introduced to North America early in the last century, where it received its common name. The E- and Z-races were discovered in the 1970s when synthetic pheromones gave very different results in attracting males in Iowa and New York. The Z-race, now widespread in the western USA, mainly attacks maize, whereas insects of the E-race specialize on Artemisia and other plants.

The two races don't interbreed in the field, and the chemical structure of the sex pheromone holds the key

The ECB sex pheromone, called 11-tetradecenylacetate, contains a long zig-zag tail of 14 carbon atoms, with one double bond. This can be in the E (trans) configuration, or alternatively the Z (cis) configuration which causes the tail to bend at that point. This seemingly small structural variation makes a big difference at mating time. When an ECB female of the Z-race is ready to mate, she releases the E and Z isomers in a ratio of 3:97, and only Z-race males are attracted. E-females emit the same isomers but in a ratio of 98:2, and this attracts only E-race males, “In evolutionary biology this is called a ‘reproductive isolation barrier’; which is interesting because it can mark the beginning of the evolution of new species,” Jean-Marc Lassance, first author of the study, explains.

A difference in enzymes (reductases) is responsible for the different E and Z ratios

“However, these two races are still far away from a development into new species, and this was actually a crucial advantage for our genetic analyses,” says Astrid Groot from the Max Planck Institute for Chemical Ecology, who has been studying sex pheromones of moths since 2001. “Although they wouldn't find each other in the field, if we put males and females of different races together in the lab, mating occurs and fertile offspring are produced. This allowed us to map the gene controlling this difference in female pheromone production." This gene mapped to a different chromosome from the desaturase enzyme that first introduces the E or Z double bond into the 14-carbon tail, but to the same chromosome as the reductase enzyme that later produces the final pheromone. Intriguingly, there are many differences in the amino acid sequences of the reductases isolated from the E or Z races. When Jean-Marc Lassance measured enzyme activities, he found that even though both races create the E and Z 14-carbon tail in nearly equal amounts, the reductase from E-race females mainly converted the E-form to the final pheromone, and the Z-race reductase converted mostly the Z-form. So a difference in the respective reductase enzymes is responsible for the different E and Z ratios released by the female pheromone glands.

Reason for the development of the two races unclear

This new finding explains only half of the story, since the reason that E and Z males exhibit such strong preferences for E-rich and Z-rich pheromone blends produced by the females is still unknown. “We can only speculate here. We have known for a long time that the gene responsible for pheromone production in females and the gene controlling male response are different; in fact they occur on different chromosomes. And we still don't understand how selection could act on two independent genes to initiate the development of the two races,” says Christer Löfstedt from Lund University, Sweden. The researchers are now turning their attention to mapping the male-response gene based on additional crosses.

Pheromone traps and “mating disruption”

As well as giving insight on the evolution of new species, the pheromones of insect pests can also be manipulated for crop protection. As soon as their chemical structure is elucidated, they can be chemically synthesized and applied in pheromone traps. These can be used as a sensitive method to monitor the population sizes of pest populations, or to catch and kill large numbers of males intent on mating. Another method is "mating disruption", where synthetically produced pheromones are widely dispersed in the field, swamping out the weaker signals of individual females, which the disoriented males cannot locate. These methods are especially useful when insecticides must be avoided, such as in control of codling moth in apple orchards, or trapping large numbers of bark beetles to protect forests. Because very low amounts of species-specific sex pheromones are sufficient to lure or confuse male insects which respond even to the slightest pheromone concentrations in the air, these methods are in particular environmentally friendly. [JWK, DH]

Original Publication:
Lassance, J-M; Groot, AT; Lienard, MA; Antony, B; Borgwardt, C; Andersson, F; Hedenström, E; Heckel, DG; Löfstedt, C: Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones.

NATURE, Advance Online Publication, 30.6.2010, DOI 10.1038/nature09058

Further Information:
Jean-Marc Lassance, Christer Löfstedt, Department of Biology, Lund University, Sweden; Tel.: +46 (0)46 222 93 38; christer.lofstedt@ekol.lu.se, jean-marc.lassance@ekol.lu.se

Astrid Groot, David Heckel, Department of Entomology, Max Planck Institute for Chemical Ecology; Tel.: +49 (0)3641 57 1501; heckel@ice.mpg.de, agroot@ice.mpg.de

Dr. Jan-Wolfhard | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>