Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

E. coli adapts to colonize plants

31.10.2012
New research from the Institute of Food Research has given new clues as to how some E. coli strains, normally at home in mammalian gastrointestinal tracts, have adopted slightly different transmission strategies, with some being better adapted to live on plants than others.

In the light of recent outbreaks of food poisoning due to contamination of vegetables by dangerous strains of E. coli, this information will be useful to making sure our food remains safe. E. coli is most at home in the warm, moist, nutrient-rich environment found in the gastrointestinal tract of warm-blooded animals. But to disperse from one host to another these bacteria must get out into the world.

There is evidence that some E. coli can survive for several weeks outside the host, and even grow in water or soil. But it is on plant matter that E. coli colonisation has become a concern, as although most types of E. coli are harmless, the presence of pathogenic strains on fruit and vegetables presents a food safety risk.

To find out more, the IFR team took the first comprehensive look at the differences between the populations of E. coli growing on crop plants and populations in the mammalian gut. Funded by the Biotechnology and Biological Sciences Research Council, they took over 100 isolates from leafy parts of vegetables growing in fields in England. Analysis of these showed that even within the same field the E. coli population is diverse and complex.
They then compared these isolates with a standard reference collection of E. coli taken from mammals, including humans, from different continents. Profiling the two groups found a number of significant differences depending on the source of isolation. Compared to the habitat inside the gut, a leaf surface is a hostile environment for gut bacteria. The temperature fluctuates away from the constant 37 °C inside our bodies, and there is a greater risk of drying out.

The researchers found that E. coli populations derived from plants tended to form biofilms more readily. Biofilms are complex structures formed by populations of bacteria coming together to make a thin film over a surface. They are held together by a protective extracellular matrix of proteins and sugars, and the researchers saw that there was also an increase in the production of components of this matrix in E. coli derived from the fields. These strains also used sucrose and other plant-derived sugars more than the E. coli populations derived from mammalian sources.

Biofilms might help to prevent E. coli drying out outside of its host and being able to take advantage of plant sugars could also aid their survival outside the main host, although overall the plant strains showed lower growth on the usual carbon sources E. coli uses.

An analysis showed that these differences are associated with previously defined phylogentic groups of E. coli showing that different environmental conditions have a selective effect in the evolution of different groups. While some have become more generalised, adapting to life outside the mammalian gut, others have remained specialised for life in this environment, avoiding the associated growth penalty. "While it was known that different environments harboured different E. coli populations, we now have an idea on how and why this happens," said Sacha Lucchini. "Knowledge of the mechanisms involved in plant colonisation by E. coli provides targets for developing strategies aimed at preventing potentially dangerous E. coli strains from colonising vegetables, thus keeping them off our plates."

Reference: Phylogenetic distribution of traits associated with plant colonization in Escherichia coli, Environmental Microbiology doi:10.1111/j.1462-2920.2012.02852.x

Andrew Chapple | EurekAlert!
Further information:
http://www.nbi.ac.uk

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>