Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dysfunctional protein dynamics behind neurological disease?

13.10.2009
Researchers at Lund University, Sweden, have taken a snapshot of proteins changing shape, sticking together and creating structures that are believed to trigger deadly processes in the nervous system.

The discovery opens the possibility of designing drugs for a devastating neurological disease, ALS.

Research indicates that ALS, in common with other neurological disorders, such as Alzheimer's and Parkinson's disease, is caused by our own proteins, which form aberrant aggregates that are fatally toxic to our nerve cells. However, it has not been known what causes these proteins to aggregate. Researchers at Lund University have now revealed what happens with proteins during the very first, critical step towards forming larger aggregates.

It turns out that the protein superoxide dismutase interchanges between its normal structure and a misfolded form. During a brief moment the structure becomes partially misfolded to expose sticky patches that normally are hidden in the interior. These patches cause two or several protein molecules to stick together, thereby forming the cornerstone of the larger structures that are believed to underlie ALS.

The research team headed by Mikael Akke at the Center for Molecular Protein Science of Lund University used NMR spectroscopy to create a snapshot of the misfolded structure, which had not previously been seen. Knowledge of the misfolded protein structure potentially makes possible future efforts to rationally design drugs that prevent the misfolding event and hence the development of ALS.

Amyotrophic lateral sclerosis (ALS) is a dreaded and incurable disease that affects nerve cells in the brain and spinal cord, leading to muscle atrophy and respiratory failure. Worldwide, 2 per 100,000 people are diagnosed with ALS each year and 6 per 1 million people suffer from ALS.

The research article "Transient structural distortion of metal-free Cu/Zn superoxide dismutase triggers aberrant oligomerization" will be published online this week in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), Early Edition.

More information: Akke phone +46-46 222 82 47 or Mikael.Akke@bpc.lu.se

Pressofficer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se; +46-46222 7186

Lena Björk Blixt | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>