Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dysfunctional endosomes are early sign of neurodegeneration

12.04.2016

Enlarged cell structures precede hallmarks and symptoms of Alzheimer's Disease and Down Syndrome

Writing in the April 11 issue of the Journal of Clinical Investigation, researchers at University of California, San Diego School of Medicine say abnormalities in a protein that helps transport and sort materials inside cells are linked to axonal dysfunction and degeneration of neurons in Alzheimer's disease (AD) and Down syndrome (DS).


This is a false-colored scanning electron micrograph of a human neuron.

Image courtesy of Thomas Deerinck, NCMIR, UC San Diego

"Amyloid plaques and neurofibrillary tangles in the brain are hallmarks of AD patients and people with DS. However, these classical manifestations may only become detectable in late stages of the disease," said Chengbiao Wu, PhD, associate professor in the Department of Neurosciences at UC San Diego School of Medicine, and director for cellular and molecular biology at the UC San Diego Down Syndrome Center for Research and Treatment. "Effective treatments will have to target earlier changes that take place in the nerve cells, eventually leading to their demise. Our current study highlights the significance of abnormally active Rab5 protein as a key contributor to early development of the disease. We believe this will open new possibilities for understanding the disease and for developing novel and effective therapies."

The endosome/lysosome or endocytic pathway in cells moves molecules, such as signaling proteins, from the surface or distant regions of a cell into the cell's body (via compartments called endosomes) or to another type of cell organelle (lysosomes) where they can be recycled. A small molecule called Rab5 plays a key role in regulating these vital processes.

But in AD and DS, the endocytic system does not work properly, though the precise nature of the underlying dysfunction was not understood. In their new paper, Wu and colleagues suggest a major reason is abnormally enlarged versions of Rab5-endosomes, which occur early and precede the onset of dementia and emergence of the amyloid plaques and neurofibrillary tangles that characterize AD and DS.

Specifically, the scientists determined that increased accumulation of amyloid precursor protein (APP) and/or a small portion of APP (β-carboxyl terminal fragment) in neurons, boosts activation of Rab5, causing enlargement of early endosomes and disruption of retrograde axonal transport of nerve growth factors (NGF) signals. As a result, impacted neurons do not function normally.

The findings were based on tests with cultured cells and rodent models.

Interestingly, when researchers introduced a dominant-negative Rab5 mutant in a fruit fly model, APP-induced axonal blockage was reduced.

Wu said the research underscores the fundamental importance of endosomal function in regulating retrograde axonal trafficking, which conveys materials from axon to cell body, and signaling of NGF. He said further studies will be needed to determine whether reducing Rab5 activation prevents or reverses neurodegeneration in AD and DS.

###

Co-authors include Wei Xu, Fang Fang, Yiwen Wu, Xinyi Wang, Shendi Chren, and Jianqing Ding, Shanghai Jiao Tong University and UC San Diego; April M. Weissmiller, Xiaobei Zhao, Mariko Sawa, and William C. Mobley, UC San Diego; Matthew L. Pearn, UC San Diego and VA San Diego Healthcare System; Joseph A. White II, and Shermali Gunawardena, State University of New York, Buffalo.

Funding for this research came, in part, from the National Institutes of Health (PN2EY016525, NS084386, NS092024), LuMind Research Down Syndrome Foundation, Larry L. Hillblom Foundation, Alzheimer's Association, Thrasher Research Fund, Tau Consortium, Ministry of Science and Technology, People's Republic of China, National Natural Science Foundation of China, Science and Technology Commission of Shanghai Municipality and Shanghai Municipal Education Commission. 

Media Contact

Scott LaFee
slafee@ucsd.edu
619-543-6163

 @UCSanDiego

http://www.ucsd.edu 

Scott LaFee | EurekAlert!

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>