Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dysfunctional endosomes are early sign of neurodegeneration

12.04.2016

Enlarged cell structures precede hallmarks and symptoms of Alzheimer's Disease and Down Syndrome

Writing in the April 11 issue of the Journal of Clinical Investigation, researchers at University of California, San Diego School of Medicine say abnormalities in a protein that helps transport and sort materials inside cells are linked to axonal dysfunction and degeneration of neurons in Alzheimer's disease (AD) and Down syndrome (DS).


This is a false-colored scanning electron micrograph of a human neuron.

Image courtesy of Thomas Deerinck, NCMIR, UC San Diego

"Amyloid plaques and neurofibrillary tangles in the brain are hallmarks of AD patients and people with DS. However, these classical manifestations may only become detectable in late stages of the disease," said Chengbiao Wu, PhD, associate professor in the Department of Neurosciences at UC San Diego School of Medicine, and director for cellular and molecular biology at the UC San Diego Down Syndrome Center for Research and Treatment. "Effective treatments will have to target earlier changes that take place in the nerve cells, eventually leading to their demise. Our current study highlights the significance of abnormally active Rab5 protein as a key contributor to early development of the disease. We believe this will open new possibilities for understanding the disease and for developing novel and effective therapies."

The endosome/lysosome or endocytic pathway in cells moves molecules, such as signaling proteins, from the surface or distant regions of a cell into the cell's body (via compartments called endosomes) or to another type of cell organelle (lysosomes) where they can be recycled. A small molecule called Rab5 plays a key role in regulating these vital processes.

But in AD and DS, the endocytic system does not work properly, though the precise nature of the underlying dysfunction was not understood. In their new paper, Wu and colleagues suggest a major reason is abnormally enlarged versions of Rab5-endosomes, which occur early and precede the onset of dementia and emergence of the amyloid plaques and neurofibrillary tangles that characterize AD and DS.

Specifically, the scientists determined that increased accumulation of amyloid precursor protein (APP) and/or a small portion of APP (β-carboxyl terminal fragment) in neurons, boosts activation of Rab5, causing enlargement of early endosomes and disruption of retrograde axonal transport of nerve growth factors (NGF) signals. As a result, impacted neurons do not function normally.

The findings were based on tests with cultured cells and rodent models.

Interestingly, when researchers introduced a dominant-negative Rab5 mutant in a fruit fly model, APP-induced axonal blockage was reduced.

Wu said the research underscores the fundamental importance of endosomal function in regulating retrograde axonal trafficking, which conveys materials from axon to cell body, and signaling of NGF. He said further studies will be needed to determine whether reducing Rab5 activation prevents or reverses neurodegeneration in AD and DS.

###

Co-authors include Wei Xu, Fang Fang, Yiwen Wu, Xinyi Wang, Shendi Chren, and Jianqing Ding, Shanghai Jiao Tong University and UC San Diego; April M. Weissmiller, Xiaobei Zhao, Mariko Sawa, and William C. Mobley, UC San Diego; Matthew L. Pearn, UC San Diego and VA San Diego Healthcare System; Joseph A. White II, and Shermali Gunawardena, State University of New York, Buffalo.

Funding for this research came, in part, from the National Institutes of Health (PN2EY016525, NS084386, NS092024), LuMind Research Down Syndrome Foundation, Larry L. Hillblom Foundation, Alzheimer's Association, Thrasher Research Fund, Tau Consortium, Ministry of Science and Technology, People's Republic of China, National Natural Science Foundation of China, Science and Technology Commission of Shanghai Municipality and Shanghai Municipal Education Commission. 

Media Contact

Scott LaFee
slafee@ucsd.edu
619-543-6163

 @UCSanDiego

http://www.ucsd.edu 

Scott LaFee | EurekAlert!

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>