Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dynamic duo takes out the cellular trash

08.09.2014

Salk scientists identify how immune cells use two critical receptors to clear dead cells from the body, pointing the way to new autoimmune and cancer therapies

In most of the tissues of the body, specialized immune cells are entrusted with the task of engulfing the billions of dead cells that are generated every day. When these garbage disposals don't do their job, dead cells and their waste products rapidly pile up, destroying healthy tissue and leading to autoimmune diseases such as lupus and rheumatoid arthritis.


In an inflammatory environment (left) and normal environment (right) macrophages (green) engulf dead cells (pink).

Credit: Anna Zagorska and Matt Joens, Waitt Advanced Biophotonics Center, Salk Institute

Now, Salk scientists have discovered how two critical receptors on these garbage-eating cells identify and engulf dead cells in very different environments, as detailed today in Nature Immunology.

"To target these receptors as treatments for autoimmune disease and cancer, it's important to know exactly which receptor is doing what. And this discovery tells us that," says senior author of the work Greg Lemke, Salk professor of molecular neurobiology and the holder of Salk's Françoise Gilot-Salk Chair.

The garbage-disposing cells, known as macrophages, have arrays of receptors on their surface, two of which—called Mer and Axl—are responsible for recognizing dead cells in normal environments and inflamed environments, respectively. Mer operates as a "steady-as-she-goes" receptor, clearing out dead cells in healthy tissues on a daily basis. Axl, in contrast, acts as an "all-hands-on-deck" receptor, kicking macrophages into action in inflammatory settings that result from infection or tissue trauma. These inflamed environments have many more dead cells.

"We thought Axl and Mer were doing the same job, and they are: they both recognize a so-called 'eat me' signal displayed on the surface of dead cells. But it turns out that they work in very different settings," says Lemke, whose lab first discovered the two receptors—which, along with a third, make up the TAM family—two decades ago. Lemke and colleagues explored the roles of TAM receptors in the brain initially, but observed that the absence of these receptors had dramatic effects on the immune system, including the development of autoimmune disease.

The receptors have since become a growing focus for cancer and autoimmune research, and previous work has found that these three receptors are important in other areas, including the intestines, reproductive organs and vision.

"This basic research focus allowed us to discover a completely new aspect of immune regulation that no one—including any immunologist—had known about before," adds Lemke.

In the new work, the researchers found multiple critical differences between Axl and Mer. For example, the receptors use different molecules—called ligands—to be activated: Axl has a single such ligand and, once engaged, is quickly cleaved off of the surface of the macrophage. Levels of the free-floating Axl in the blood have turned out to be an accurate, general biomarker for inflammation, quickly showing up in the circulation after tissue trauma or injury.

"We compared the behavior and regulation of the receptors, and the results were very striking," says first author Anna Zagórska. "In response to many different pro-inflammatory stimuli, Axl was upregulated and Mer was not. In contrast, immunosuppressive corticosteroids, which are widely used to suppress inflammation in people, upregulated Mer and suppressed Axl. These differences were our entry point to the study."

Next, the researchers are looking into each receptor's activity in more detail. The team is finding that these receptors are unusual in that they have a three-step binding procedure, whereas most cell receptors bind in one step. Exploring and understanding this process will help to lead to more targeted therapeutics for cancers and other diseases in which the receptors are thought to act.

###

Authors on the paper include Anna Zagórska, Paqui Través, Erin Lew, Ian Dransfield and Greg Lemke.

The work was funded by the National Institutes of Health, the Leona M. and Harry B. Helmsley Charitable Trust, the Nomis Foundation, the H.N. and Frances C. Berger Foundation, the Fritz B. Burns Foundation, the HKT Foundation, the Human Frontiers Science Program, and the Leukemia and Lymphoma Society.

About the Salk Institute for Biological Studies

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probes fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, MD, the Institute is an independent nonprofit organization and architectural landmark.

Salk Communications | Eurek Alert!
Further information:
http://www.salk.edu

Further reports about: Dynamic Foundation Salk TAM autoimmune differences diseases environments healthy immune inflammation leading macrophages

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>