Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dying Brightly

25.01.2013
Fluorescence lights up cells programmed to die

Programmed cell death, or apoptosis, occurs tens of millions of times every day in every human body. Researchers in South Korea have devised an easy method to detect apoptotic cells by fluorescence, as they report in Chemistry—An Asian Journal.



Their method makes it easier to detect improper biological regulation of apoptosis, which can lead to neurodegenerative diseases, autoimmune diseases, and cancer.

Apoptosis is involved in macroscopic developmental processes as well. For example, in an embryo, the cells between fingers die by apoptosis to form individual digits, and the tail of a tadpole is resorbed by apoptosis when it metamorphoses into a frog.

Upon apoptosis, the relative composition of the outside and inside of the cell membrane changes, and one component, phosphatidylserine (PS), migrates from the interior to the exterior. Kyo Han Ahn and collaborators at Pohang University of Science and Technology designed an artificial membrane vesicle that fluoresces when it interacts with PS. This so-called liposome is held together by a polydiacetylene backbone and is decorated with zinc atoms at its periphery.

The zinc atoms interact with PS but not with other components of the cell membrane. This interaction distorts the shape of the backbone, causing fluorescence of the liposome. The "turn on" effect eliminates washing steps to remove extra fluorescent marker, making the method easy to use. The selectivity of the interaction means that only apoptotic cells are marked fluorescently. Microscopy images show that the fluorescence is localized on the cell surface, confirming the mode of interaction between liposome and PS.

About the Author
Kyo Han Ahn is professor of chemistry at the Pohang University of Science and Technology (POSTECH; South Korea) and director of the Center for Electro-Photo Behaviors in Advanced Molecular Systems there. His research interests include molecular recognition and sensing, nanometer sized biological functional materials, and luminescent materials.
Author: Kyo Han Ahn, Pohang University of Science and Technology (Rep. Korea), http://www.postech.ac.kr/chem/mras/index.html
Title: Turn-On Fluorescence Detection of Apoptotic Cells Using a Zinc(II)-Dipicolylamine-Functionalized Poly(diacetylene) Liposome

Chemistry - An Asian Journal, Permalink to the article: http://dx.doi.org/10.1002/asia.201201139

Kyo Han Ahn | Wiley-VCH
Further information:
http://www.postech.ac.kr/chem/mras/index.html
http://dx.doi.org/10.1002/asia.201201139
http://www.wiley-vch.de

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>