Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust-plumes power intercontinental microbial migrations

18.12.2012
Along with pollutants from Asia, transpacific dust plumes deliver vast quantities of microbes to North America, according to a manuscript published online ahead of print in the journal Applied and Environmental Microbiology.

"We detected thousands of unique microbial species, many of which seem particularly well-suited for atmospheric transport," says first author David J. Smith, a graduate student at the University of Washington, Seattle. "We also detected archaea, a domain of life that has never before been sampled at high altitude. We are just starting to understand the consequences of long-range microbial transport."

"Over 70 million tons of Asian aerosols—mostly dust—reach our continent every year," says Smith. "There could be thousands of microbes per gram of dust. Do the math. The number is staggering. Distant continents are essentially sneezing on each other."

Although the research is basic, Smith foresees value in understanding how bacteria survive at high altitudes during intercontinental journeys. For example, identifying the mechanisms for resisting ultraviolet radiation at altitude, which likely involve protecting and repairing DNA, could prove invaluable to biotechnology and medicine, says Smith. "It is difficult to predict specific breakthroughs and applications, but studying microbes in extreme environments has had practical benefit before," he says, mentioning discovery of a thermostable enzyme from microbes in the hot springs of Yellowstone National Park, which proved invaluable to Polymerase Chain Reaction. Additionally, developing predictive models of disease dispersal via the tradewinds "could be of tremendous value to farmers," says Smith.

The research took place at an observatory perched on the summit of a volcano in the Pacific Northwest, says Smith. "We could process huge volumes of air, 24/7, and capture enough biomass to analyze airborne microorganisms using molecular methods." Two major pollution events emanating from Asia during the sampling season of 2011 helped the team distinguish Asian expatriate microbes from locals, along with chemical and meteorological methods, says Smith.

The research was physically challenging. "Mt. Bachelor is a very snowy place and one of the windiest mountains in North America," says Smith. "Some summit days were an endurance marathon. Wearing latex gloves when it's 20 degrees below zero is not fun. But it was a worthwhile sacrifice for science, and I would happily do it again."

Conducting the research also changed how Smith views the sky. "Now when I look at the clouds, I see microbial sanctuaries," he says.

A PDF of the manuscript can be found online at http://bit.ly/asmtip1212a. Formal publication is scheduled for the February 2013 issue of Applied and Environmental Microbiology.

(D.J. Smith, H.J. Timonen, D.A. Jaffe, D.W. Griffin, M.N. Birmele, K.D. Perry, P.D. Ward, M.S. Robert, 2012. Intercontinental dispersal of bacteria and archaea in transpacific winds. Appl. Environ. Microbiol. (E-pub ahead of print 7 Dec. 2012).

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>