Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke team finds new clues to how cancer spreads

28.06.2011
Cancer cells circulating in the blood carry newly identified proteins that could be screened to improve prognostic tests and suggest targets for therapies, report scientists at the Duke Cancer Institute.

Building on current technologies that detect tumor cells circulating in blood, the Duke team was able to characterize these cells in a new way, illuminating how they may escape from the originating tumors and move to other locations in the body.

The circulating tumor cmoponents include proteins normally seen when embryonic stem cells begin to specialize and move through the body to develop organs such as the heart, bones and skin, the Duke scientists reported this month in the journal Molecular Cancer Research.

The discovery may enhance the accuracy of blood tests that detect circulating cancer cells, giving doctors better information to gauge how a patient's disease is responding or progressing.

"By developing a better blood test based on our findings, we may be able to identify molecular targets for therapy tailored to an individual patient's cancer," said Andrew J. Armstrong, M.D., ScM, assistant professor of medicine at Duke and lead author of the study.

The Duke team isolated tumor cells from blood samples of 57 patients, including 41 men with advanced prostate cancer and 16 women with metastatic breast cancer.

In the tumor cells of more than 80 percent of the prostate cancer patients and 75 percent of those with breast cancer, the researchers detected a group of proteins normally seen during embryonic development when stem cells begin to assume distinct roles.

As stem cells morph to build tissue and organs, they switch back and forth in what is known as epithelial-mesenchymal transition (EMT) and it's opposite, mesencymal-epithelial transition (MET). Cancer cells have that same ability, changing from an epithelial cell similar to the organs from which they arose, to a mesenchymal or connective tissue-like cell. This EMT may underlie much of the treatment resistance and ability of cancer cells to spread.

Current FDA-approved blood tests that detect circulating tumor cells flag molecules associated with epithelial transitions; however, the Duke team found additional markers associated with mesenchymal origins, adding new targets that could be used to enhance the usefulness and sensitivity of the tests.

"Cancer is a hijacking of that normal embryonic stem cell process," Armstrong said. "It reactivates this silent program that is turned off in adult cells, allowing tumor cells to move throughout the body and become resistant to therapy."

Armstrong said the involvement of EMT/MET processes in tumor growth is a relatively new finding that is gaining acceptance among cancer scientists. The discovery by the Duke team adds strong evidence that the EMT/MET processes are underway when a patient's cancer is spreading.

"In my opinion this work presents some of the most compelling data for the existence of epithelial-mesenchymal transitions in human cancer," said Mariano A. Garcia-Blanco, professor of medicine, molecular genetics and microbiology, and senior author in the work.

"This work should pave the way for studies to understand the mechanisms underlying these transitions in humans and their importance in disease progression and therapy," said Garcia-Blanco, who is also director of the Duke Center for RNA Biology.

The Duke team additionally noted that tumor cells appear to be most dangerous when they can easily transition between EMT and MET in a stem cell-like phase of changability that enables them to grow, spread and resist treatment.

That finding could provide new opportunities for novel therapies that target these morphing mechanisms.

"This is not just for a biomarker, it's a direction to take therapies as well," Armstrong said. "It's a new horizon."

In addition to Armstrong and Garcia-Blanco, study authors include Matthew S. Marengo; Sebastian Oltean; Gabor Kemeny; Rhonda L. Bitting; James Turnbull; Christina I. Herold; Paul K. Marcom; and Daniel George.

The study was funded with grants from the National Institutes of Health; the Department of Defense Prostate Cancer Research Program; the Prostate Cancer Foundation; the American Cancer Society; and the Duke Cancer Institute.

Armstrong, Oltean, George and Garcia-Blanco have a patent application for the biological process used for detecting the blood markers.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>