Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke researchers engineer cartilage from pluripotent stem cells

30.10.2012
A team of Duke Medicine researchers has engineered cartilage from induced pluripotent stem cells that were successfully grown and sorted for use in tissue repair and studies into cartilage injury and osteoarthritis.

The finding is reported online Oct. 29, 2012, in the journal the Proceedings of the National Academy of Sciences, and suggests that induced pluripotent stem cells, or iPSCs, may be a viable source of patient-specific articular cartilage tissue.

"This technique of creating induced pluripotent stem cells – an achievement honored with this year's Nobel Prize in medicine for Shimya Yamanaka of Kyoto University - is a way to take adult stem cells and convert them so they have the properties of embryonic stem cells," said Farshid Guilak, PhD, Laszlo Ormandy Professor of Orthopaedic Surgery at Duke and senior author of the study.

"Adult stems cells are limited in what they can do, and embryonic stem cells have ethical issues," Guilak said. "What this research shows in a mouse model is the ability to create an unlimited supply of stem cells that can turn into any type of tissue – in this case cartilage, which has no ability to regenerate by itself."

Articular cartilage is the shock absorber tissue in joints that makes it possible to walk, climb stairs, jump and perform daily activities without pain. But ordinary wear-and-tear or an injury can diminish its effectiveness and progress to osteoarthritis. Because articular cartilage has a poor capacity for repair, damage and osteoarthritis are leading causes of impairment in older people and often requires joint replacement.

In their study, the Duke researchers, led by Brian O. Diekman, PhD., a post-doctoral associate in orthopaedic surgery, aimed to apply recent technologies that have made iPSCs a promising alternative to other tissue engineering techniques, which use adult stem cells derived from the bone marrow or fat tissue.

One challenge the researchers sought to overcome was developing a uniformly differentiated population of chondrocytes, cells that produce collagen and maintain cartilage, while culling other types of cells that the powerful iPSCs could form.

To achieve that, the researchers induced chondrocyte differentiation in iPSCs derived from adult mouse fibroblasts by treating cultures with a growth medium. They also tailored the cells to express green fluorescent protein only when the cells successfully became chondrocytes. As the iPSCs differentiated, the chondrocyte cells that glowed with the green fluorescent protein were easily identified and sorted from the undesired cells.

The tailored cells also produced greater amounts of cartilage components, including collagen, and showed the characteristic stiffness of native cartilage, suggesting they would work well repairing cartilage defects in the body.

"This was a multi-step approach, with the initial differentiation, then sorting, and then proceeding to make the tissue," Diekman said. "What this shows is that iPSCs can be used to make high quality cartilage, either for replacement tissue or as a way to study disease and potential treatments."

Diekman and Guilak said the next phase of the research will be to use human iPSCs to test the cartilage-growing technique.

"The advantage of this technique is that we can grow a continuous supply of cartilage in a dish," Guilak said. "In addition to cell-based therapies, iPSC technology can also provide patient-specific cell and tissue models that could be used to screen for drugs to treat osteoarthritis, which right now does not have a cure or an effective therapy to inhibit cartilage loss."

In addition to Guilak and Diekman, study authors include Nicolas Christoforou; Vincent P. Willard; Alex Sun; Johannah Sanchez-Adams; and Kam W. Leong.

The National Institutes of Health (AR50245, AR48852, AG15768, AR48182, Training Grant T32AI007217) and the Arthritis Foundation funded the study.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>