Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dual spotlights in the brain

How we manage to attend to multiple objects without being distracted by irrelevant information

The “tiki-taka”-style of the Spanish national football team is amazing to watch: Xavi passes to Andrès Iniesta, he just rebounds the ball once and it’s right at Xabi Alonso’s foot. The Spanish midfielders cross the field as if they run on rails, always maintaining attention on the ball and the teammates, the opponents chasing after them without a chance.

The striker has to divide his attention: He has to attend to the goalkeeper, but also to player #3 who might block his shot. By splitting his ‘spotlight of attention’ he stays on top of the situation. To ensure that his information processing capacities are not overtaxed he is able to suppress the irrelevant information next to and between his two attentional foci. This provides him with all the necessary information in optimal quality and without distraction. This process is visualized in the picture through various degrees of blurriness.
Image: Christian Kiel/ Fuchstrick GbR

An international team of scientists from the German Primate Center and McGill University in Canada, including Stefan Treue, head of the Cognitive Neuroscience Laboratory, has now uncovered how the human brain makes such excellence possible by dividing visual attention: The brain is capable of splitting its ‘attentional spotlight’ for an enhanced processing of multiple visual objects. (Neuron, doi: 10.1016/j.neuron.2011.10.013)

When we pay attention to an object, neurons responsible for this location in our field of view are more active then when they process unattended objects. But quite often we want to pay attention to multiple objects in different spatial positions, with interspersed irrelevant objects. Different theories have been proposed to account for this ability. One is, that the attentive focus is split spatially, excluding objects between the attentional spotlights. Another possibility is, that the attentional focus is zoomed out to cover all relevant objects, but including the interspersed irrelevant ones. A third possibility would be a single focus rapidly switching between the attended objects.

Studying rhesus macaques
In order to explain how such a complex ability is achieved, the neuroscientists measured the activity of individual neurons in areas of the brain involved in vision. They studied two rhesus macaques, which were trained in a visual attention task. The monkeys had learned to pay attention to two relevant objects on a screen, with an irrelevant object between them. The experiment showed, that the macaques’ neurons responded strongly to the two attended objects with only a weak response to the irrelevant stimulus in the middle. So the brain is able to spatially split visual attention and ignore the areas in between. “Our results show the enormous adaptiveness of the brain, which enables us to deal effectively with many different situations.

This multi-tasking allows us to simultaneously attend multiple objects”, Stefan Treue says. Such a powerful ability of our attentive system is one precondition for humans to become perfect football-artists but also to safely navigate in everyday traffic.

Original Publication
Robert Niebergall, Paul S. Khayat, Stefan Treue, Julio C. Martinez-Trujillo (2011): Multifocal attention filters out targets from distractors within and beyond primate MT neurons receptive field boundaries. Neuron, Volume 72, Issue 6, 1067-1079, 22 December 2011. doi: 10.1016/j.neuron.2011.10.013
Prof. Dr. Stefan Treue
Phone: +49 551 3851-117

Susanne Diederich (Press and Communications)
Phone: +49 551 3851-359

The German Primate Center (DPZ) in Göttingen, Germany, conducts basic research on and with primates in the areas of infectious diseases, neurosciences and organismic biology. In addition, it operates four field stations abroad and is a competence and reference center for primate research. The DPZ is one of the 86 research and infrastructure institutions of the Leibnitz Association in Germany (

Dr. Susanne Diederich | idw
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>