Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New dual recognition mechanism discovered in tuberculosis

10.09.2010
Case Western Reserve-led team publishes major finding which may aid in new antibiotic and vaccine development

One third of the world's population is infected with Mycobacterium tuberculosis (MTB), which leads to tuberculosis (TB), a leading cause of death world-wide. A new discovery, led by a team of researchers from Case Western Reserve University School of Medicine, offers hope for new approaches to the prevention and treatment of TB. The team's discovery of a novel mechanism that may contribute to immune recognition of MTB is published in the September issue of Nature Structural and Molecular Biology.

Most individuals with TB recover from the initial infection and become asymptomatic, but the bacterium persists for years, surviving largely inside macrophages, a type of cell that resides in the immune system. This presents a public health problem in that TB can reactivate and cause serious disease or death. Researchers and physicians know the body's immune system is capable of containing the infection but not curing it completely. It begs the question: "How does the organism survive in the human immune system for so many years?"

For the past 15 years, Drs. Clifford Harding and W. Henry Boom of Case Western Reserve have been seeking the answer to this question. Their work indicated that MTB can inhibit the ability of macrophages to stimulate infection-fighting immune responses, and they identified that a protein on macrophages called Toll-like receptor 2 (TLR2) is involved in this immune evasion mechanism. TLR2 seems to be a two-edged sword in the complex immune response to MTB, as it helps some immunity mechanisms and inhibits others. Understanding the balance of these effects and the role of TLR2 may provide insights to design therapies for TB.

"Understanding how MTB interacts with the immune system and how it can both activate and inhibit the immune response is critically important for the design of the next generation of TB vaccines. The persistence of infection is dependent on MTB's ability to manipulate our immune system to its advantage. The paradox here is that the MTB molecule, LprG, stimulates TLR2, one of the major receptors we have to identify disease-causing microorganisms. In this case, too much stimulation through TLR2 actually favors MTB by causing parts of the immune response to shut down," explains W. Henry Boom, MD, professor of medicine and director of the Tuberculosis Research Unit at Case Western Reserve School of Medicine.

The new studies show that the potency of LprG to induce these responses is explained by its combination of two mechanisms to activate TLR2: first, by directly stimulating TLR2 and, second, by serving as a carrier to deliver other molecules that stimulate TLR2. This dual mechanism may drive stronger regulation of immune responses by MTB, and future vaccine development may be enhanced by designing approaches to use such mechanisms. Furthermore, the work indicates that LprG contributes to the assembly of the bacterial cell wall, suggesting that it may be possible to develop molecules to interfere with LprG function and potentially serve as new antibiotics to fight TB. The development of new antibiotics is an increasingly important goal, since resistance to existing antibiotics is becoming widespread.

A multi-institutional partnership contributed to the overall success of this research initiative. Two important collaborative groups were led by James C. Sacchettini, PhD, Texas A&M University and D. Branch Moody, MD, Harvard Medical School. In addition, the project was spearheaded by Michael G. Drage and Nicole D. Pecora, two Case Western Reserve students in the MSTP Program, granting dual MD and PhD degrees, in collaboration with Jennifer Tsai, a graduate student in Dr. Sacchettini's group.

"Our research team is composed of several collaborative groups that each contributed key components to this project. The synergistic way in which the team interacted was a perfect example of scientists working together to advance the study of a disease that detrimentally impacts the lives of so many across the globe. We look forward to continuing to advance this research together," says Clifford V. Harding, MD, PhD, professor and interim chair of pathology at Case Western Reserve School of Medicine.

As they look to the future, the research team will work to gain a better understanding of immune responses in TB and hopefully design approaches to treat the deadly disease, including antibiotics or immunotherapies. Continued work will include study of the mechanism of immune-evasion by MTB with the hope of finding ways to reverse this mechanism so that it no longer causes a persistent infection.

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Nine Nobel Laureates have been affiliated with the school of medicine.

Annually, the School of Medicine trains more than 800 MD and MD/PhD students and ranks in the top 20 among U.S. research-oriented medical schools as designated by U.S. News & World Report "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002. http://casemed.case.edu.

Jessica Studeny | EurekAlert!
Further information:
http://www.case.edu

Further reports about: LprG MTB Medicine Reserve School TLR2 immune response immune system new antibiotics western

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>