Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug Sensing by a Synthetic Receptor

17.06.2014

Nanomechanical detection of methamphetamines and designer drugs

The widespread use of methamphetamines and related designer drugs is a major challenge for our society, with significant impact on health and social security.


In the journal Angewandte Chemie, Italian researchers have now introduced a new method of detection that allows the entire class of methamphetamine drugs to be detected in water. A probe equipped with synthetic receptor molecules responds to a grouping of atoms that is present in all methamphetamines. The chemical variations of the different designer drugs have no effect.

A large variety of analytical methods for the detection of methamphetamines have been developed, most of which are slow to yield results or require complicated operations such as labor-intensive sample preparation. The identification of designer drugs presents a further challenge.

... more about:
»Drug »Industrial »cantilever »drugs »receptor »substances

These compounds are based on an existing drug whose chemical structure has been slightly altered. Although the effect of the drug is not changed by these modifications, they do cause serious problems for current detection methods, which are optimized for the identification of specific substances and usually cannot recognize related drugs with a different structure. The demand for a sensitive, selective method for the rapid detection of methamphetamines and designer drugs in the field is correspondingly high.

Scientists from the Universities of Parma, Brescia, and Catania have now successfully met this challenge. Their new method is based on molecular recognition and a nanomechanical detector. The team led by Paolo Bergese and Enrico Dalcanale grafted concave molecules called cavitands to a cantilever made of silicon.

Such cantilevers are used as probes for atomic force microscopes. An array of such grafted cantilevers is used to probe the surface of an aqueous sample. If a cavitand comes into contact with a methamphetamine molecule, the molecule is bound. This molecular recognition is transformed into a mechanical response, which is converted into a deflection of the cantilever.

The cavitands were designed so that a single molecule reliably “recognizes” the methylamino group common to all methamphetamine-based drugs by way of a synergistic set of weak interactions. The chemical variations inherent in designer drugs do not interfere with the recognition by the synthetic receptor.

Other substances typically mixed with the drug, usually glucose or lactose, do not disturb the detection either. The researchers were able to demonstrate the effectiveness of their technique with a variety of methamphetamine-based substances as well as real samples from the street.

About the Author

Dr Enrico Dalcanale is Associate Professor of Industrial Chemistry at University of Parma and Scientific Director of the functional materials section of INSTM (Italian Interuniversity Consortium of Materials Science and Technology, www.instm.it). His expertise is supramolecular chemistry applied to materials science, with main focus on sensing and responsive polymeric materials.

Author: Enrico Dalcanale, Università degli Studi di Parma (Italy), http://www.dalcanalegroup.it/enricos-cv/

Title: Cavitand-Grafted Silicon Microcantilevers as a Universal Probe for Illicit and Designer Drugs in Water

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201404774

Enrico Dalcanale | Angewandte Chemie

Further reports about: Drug Industrial cantilever drugs receptor substances

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>