Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug Sensing by a Synthetic Receptor

17.06.2014

Nanomechanical detection of methamphetamines and designer drugs

The widespread use of methamphetamines and related designer drugs is a major challenge for our society, with significant impact on health and social security.


In the journal Angewandte Chemie, Italian researchers have now introduced a new method of detection that allows the entire class of methamphetamine drugs to be detected in water. A probe equipped with synthetic receptor molecules responds to a grouping of atoms that is present in all methamphetamines. The chemical variations of the different designer drugs have no effect.

A large variety of analytical methods for the detection of methamphetamines have been developed, most of which are slow to yield results or require complicated operations such as labor-intensive sample preparation. The identification of designer drugs presents a further challenge.

... more about:
»Drug »Industrial »cantilever »drugs »receptor »substances

These compounds are based on an existing drug whose chemical structure has been slightly altered. Although the effect of the drug is not changed by these modifications, they do cause serious problems for current detection methods, which are optimized for the identification of specific substances and usually cannot recognize related drugs with a different structure. The demand for a sensitive, selective method for the rapid detection of methamphetamines and designer drugs in the field is correspondingly high.

Scientists from the Universities of Parma, Brescia, and Catania have now successfully met this challenge. Their new method is based on molecular recognition and a nanomechanical detector. The team led by Paolo Bergese and Enrico Dalcanale grafted concave molecules called cavitands to a cantilever made of silicon.

Such cantilevers are used as probes for atomic force microscopes. An array of such grafted cantilevers is used to probe the surface of an aqueous sample. If a cavitand comes into contact with a methamphetamine molecule, the molecule is bound. This molecular recognition is transformed into a mechanical response, which is converted into a deflection of the cantilever.

The cavitands were designed so that a single molecule reliably “recognizes” the methylamino group common to all methamphetamine-based drugs by way of a synergistic set of weak interactions. The chemical variations inherent in designer drugs do not interfere with the recognition by the synthetic receptor.

Other substances typically mixed with the drug, usually glucose or lactose, do not disturb the detection either. The researchers were able to demonstrate the effectiveness of their technique with a variety of methamphetamine-based substances as well as real samples from the street.

About the Author

Dr Enrico Dalcanale is Associate Professor of Industrial Chemistry at University of Parma and Scientific Director of the functional materials section of INSTM (Italian Interuniversity Consortium of Materials Science and Technology, www.instm.it). His expertise is supramolecular chemistry applied to materials science, with main focus on sensing and responsive polymeric materials.

Author: Enrico Dalcanale, Università degli Studi di Parma (Italy), http://www.dalcanalegroup.it/enricos-cv/

Title: Cavitand-Grafted Silicon Microcantilevers as a Universal Probe for Illicit and Designer Drugs in Water

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201404774

Enrico Dalcanale | Angewandte Chemie

Further reports about: Drug Industrial cantilever drugs receptor substances

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>