Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug Sensing by a Synthetic Receptor

17.06.2014

Nanomechanical detection of methamphetamines and designer drugs

The widespread use of methamphetamines and related designer drugs is a major challenge for our society, with significant impact on health and social security.


In the journal Angewandte Chemie, Italian researchers have now introduced a new method of detection that allows the entire class of methamphetamine drugs to be detected in water. A probe equipped with synthetic receptor molecules responds to a grouping of atoms that is present in all methamphetamines. The chemical variations of the different designer drugs have no effect.

A large variety of analytical methods for the detection of methamphetamines have been developed, most of which are slow to yield results or require complicated operations such as labor-intensive sample preparation. The identification of designer drugs presents a further challenge.

... more about:
»Drug »Industrial »cantilever »drugs »receptor »substances

These compounds are based on an existing drug whose chemical structure has been slightly altered. Although the effect of the drug is not changed by these modifications, they do cause serious problems for current detection methods, which are optimized for the identification of specific substances and usually cannot recognize related drugs with a different structure. The demand for a sensitive, selective method for the rapid detection of methamphetamines and designer drugs in the field is correspondingly high.

Scientists from the Universities of Parma, Brescia, and Catania have now successfully met this challenge. Their new method is based on molecular recognition and a nanomechanical detector. The team led by Paolo Bergese and Enrico Dalcanale grafted concave molecules called cavitands to a cantilever made of silicon.

Such cantilevers are used as probes for atomic force microscopes. An array of such grafted cantilevers is used to probe the surface of an aqueous sample. If a cavitand comes into contact with a methamphetamine molecule, the molecule is bound. This molecular recognition is transformed into a mechanical response, which is converted into a deflection of the cantilever.

The cavitands were designed so that a single molecule reliably “recognizes” the methylamino group common to all methamphetamine-based drugs by way of a synergistic set of weak interactions. The chemical variations inherent in designer drugs do not interfere with the recognition by the synthetic receptor.

Other substances typically mixed with the drug, usually glucose or lactose, do not disturb the detection either. The researchers were able to demonstrate the effectiveness of their technique with a variety of methamphetamine-based substances as well as real samples from the street.

About the Author

Dr Enrico Dalcanale is Associate Professor of Industrial Chemistry at University of Parma and Scientific Director of the functional materials section of INSTM (Italian Interuniversity Consortium of Materials Science and Technology, www.instm.it). His expertise is supramolecular chemistry applied to materials science, with main focus on sensing and responsive polymeric materials.

Author: Enrico Dalcanale, Università degli Studi di Parma (Italy), http://www.dalcanalegroup.it/enricos-cv/

Title: Cavitand-Grafted Silicon Microcantilevers as a Universal Probe for Illicit and Designer Drugs in Water

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201404774

Enrico Dalcanale | Angewandte Chemie

Further reports about: Drug Industrial cantilever drugs receptor substances

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>