Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug-screening method yields long-sought anti-HIV compounds

14.06.2012
The drug candidates act on a target unlikely to mutate

Scientists at The Scripps Research Institute have used a powerful new chemical-screening method to find compounds that inhibit the activity of human immunodeficiency virus (HIV), the virus that causes AIDS. Unlike existing anti-HIV drugs, the compounds bind to a protein called "nucelocapsid," which is unlikely to mutate into drug-resistant forms.

"Most of the nucleocapsid-inhibiting compounds that have been identified to date are very toxic, but our screening method identified inhibitors that are less toxic and thus more likely to lead to useful drugs," said Scripps Research Associate Professor Bruce Torbett. Torbett is the senior author of the new report, which appears in the June 14, 2012 print issue of the Journal of Medicinal Chemistry.

HIV's nucleocapsid protein binds to the viral genome to package and protect it, and plays a key role in the assembly of new virus copies, as well as in the reverse transcription of the viral genome into DNA. It has long been a target of HIV drug developers because it grabs hold of the viral genome using protein structures—known as zinc knuckles—that can't change much without losing their functionality. It thus is thought to have little room to mutate into drug-resistant forms, in contrast with other HIV proteins.

Screening Out Toxicity

However, despite almost two decades of research, there are still no FDA-approved drugs that target HIV's nucleocapsid protein and its zinc knuckle structures. One reason is that similar structures exist on many healthy cellular proteins; thus compounds that target them are apt to have unwanted side effects. "When researchers have targeted these nucleocapsid zinc knuckles in the past, they've usually ended up producing toxicity," Torbett said.

To increase the chances of finding safe compounds, Torbett and his colleagues—postdoctoral researcher Sebastian Breuer, the study's first author, and Max Chang and Jinyun Yuan, also postdoctoral researchers—began with the Maybridge HitFinder Collection, a library of 14,400 chemical compounds from which many broadly toxic molecules have already been excluded. The Scripps Research Molecular Screening Center maintains the latest robotic equipment for quickly applying chemical tests to such libraries. With the help of screening expert Scripps Research Professor Hugh Rosen, Screening Center Staff Scientist Steven Brown, and Research Assistant Jacqueline Lohse, Breuer applied a special combination of screening tests to the Maybridge library to rapidly zero in on effective and safe nucleocapsid-inhibiting compounds.

The first screening test employed a technique known as fluorescence polarization to measure the ability of each compound in the library to displace the binding of the viral genome to the nucleocapsid protein. (The study focused on the virus type HIV-1, which accounts for the vast majority of HIV infections outside West Africa.) The second test, using differential scanning fluorimetry, was applied to the 101 compounds that passed the first test; it identified those that perform the displacement by binding strongly to the nucleocapsid protein rather than to the viral genome.

After eliminating the weaker and more toxic candidates with further tests, Breuer, Torbett, and their colleagues ended up with 10 compounds. Detailed analyses of these yielded two that were sufficiently powerful at inhibiting viral infectivity in cell culture tests, without being unacceptably toxic.

"We went very quickly from having a concept to having these two inhibitors with demonstrated anti-HIV activity in cells," said Torbett.

Searching for the 'Sweet Spot'

With his Scripps Research colleagues M. G. Finn and Valery Fokin, Torbett now plans to evaluate compounds that are closely related to the two inhibitors to see if the scientists can find any that are even more safe and effective. Torbett and colleagues also plan to apply the same combination-screening method to larger compound libraries to identify entirely new nucleocapsid-inhibiting compounds.

To gain a better understanding of how these inhibitors work, Torbett is also collaborating with Scripps Research structural biologists, including David Stout and Arthur Olson, and virologist John Elder to perform X-ray crystallography studies of the inhibitors in combination with the HIV nucleocapsid protein.

"The overall goal here is to find a 'sweet spot' on the nucleocapsid protein that can be targeted effectively by a small-molecule drug without causing toxicity," Torbett said.

The study was supported by grants from the National Institutes of Health's National Institute of General Medical Sciences, National Institute of Allergy and Infection Diseases, and National Heart, Lung and Blood Institute, as well as the California HIV/AIDS Research Program.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>