Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug-screening method yields long-sought anti-HIV compounds

14.06.2012
The drug candidates act on a target unlikely to mutate

Scientists at The Scripps Research Institute have used a powerful new chemical-screening method to find compounds that inhibit the activity of human immunodeficiency virus (HIV), the virus that causes AIDS. Unlike existing anti-HIV drugs, the compounds bind to a protein called "nucelocapsid," which is unlikely to mutate into drug-resistant forms.

"Most of the nucleocapsid-inhibiting compounds that have been identified to date are very toxic, but our screening method identified inhibitors that are less toxic and thus more likely to lead to useful drugs," said Scripps Research Associate Professor Bruce Torbett. Torbett is the senior author of the new report, which appears in the June 14, 2012 print issue of the Journal of Medicinal Chemistry.

HIV's nucleocapsid protein binds to the viral genome to package and protect it, and plays a key role in the assembly of new virus copies, as well as in the reverse transcription of the viral genome into DNA. It has long been a target of HIV drug developers because it grabs hold of the viral genome using protein structures—known as zinc knuckles—that can't change much without losing their functionality. It thus is thought to have little room to mutate into drug-resistant forms, in contrast with other HIV proteins.

Screening Out Toxicity

However, despite almost two decades of research, there are still no FDA-approved drugs that target HIV's nucleocapsid protein and its zinc knuckle structures. One reason is that similar structures exist on many healthy cellular proteins; thus compounds that target them are apt to have unwanted side effects. "When researchers have targeted these nucleocapsid zinc knuckles in the past, they've usually ended up producing toxicity," Torbett said.

To increase the chances of finding safe compounds, Torbett and his colleagues—postdoctoral researcher Sebastian Breuer, the study's first author, and Max Chang and Jinyun Yuan, also postdoctoral researchers—began with the Maybridge HitFinder Collection, a library of 14,400 chemical compounds from which many broadly toxic molecules have already been excluded. The Scripps Research Molecular Screening Center maintains the latest robotic equipment for quickly applying chemical tests to such libraries. With the help of screening expert Scripps Research Professor Hugh Rosen, Screening Center Staff Scientist Steven Brown, and Research Assistant Jacqueline Lohse, Breuer applied a special combination of screening tests to the Maybridge library to rapidly zero in on effective and safe nucleocapsid-inhibiting compounds.

The first screening test employed a technique known as fluorescence polarization to measure the ability of each compound in the library to displace the binding of the viral genome to the nucleocapsid protein. (The study focused on the virus type HIV-1, which accounts for the vast majority of HIV infections outside West Africa.) The second test, using differential scanning fluorimetry, was applied to the 101 compounds that passed the first test; it identified those that perform the displacement by binding strongly to the nucleocapsid protein rather than to the viral genome.

After eliminating the weaker and more toxic candidates with further tests, Breuer, Torbett, and their colleagues ended up with 10 compounds. Detailed analyses of these yielded two that were sufficiently powerful at inhibiting viral infectivity in cell culture tests, without being unacceptably toxic.

"We went very quickly from having a concept to having these two inhibitors with demonstrated anti-HIV activity in cells," said Torbett.

Searching for the 'Sweet Spot'

With his Scripps Research colleagues M. G. Finn and Valery Fokin, Torbett now plans to evaluate compounds that are closely related to the two inhibitors to see if the scientists can find any that are even more safe and effective. Torbett and colleagues also plan to apply the same combination-screening method to larger compound libraries to identify entirely new nucleocapsid-inhibiting compounds.

To gain a better understanding of how these inhibitors work, Torbett is also collaborating with Scripps Research structural biologists, including David Stout and Arthur Olson, and virologist John Elder to perform X-ray crystallography studies of the inhibitors in combination with the HIV nucleocapsid protein.

"The overall goal here is to find a 'sweet spot' on the nucleocapsid protein that can be targeted effectively by a small-molecule drug without causing toxicity," Torbett said.

The study was supported by grants from the National Institutes of Health's National Institute of General Medical Sciences, National Institute of Allergy and Infection Diseases, and National Heart, Lung and Blood Institute, as well as the California HIV/AIDS Research Program.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>