Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug to reverse breast cancer spread in development

27.01.2014
Compound trialed on mice showed a complete halt in spread of metastatic tumors

Researchers at Cardiff University are developing a novel compound known to reverse the spread of malignant breast cancer cells.

The vast majority of deaths from cancer result from its progressive spread to vital organs, known as metastasis. In breast cancer up to 12,000 patients a year develop this form of the disease, often several years after initial diagnosis of a breast lump.

In a recent series of studies researchers identified a previously unknown critical role for a potential cancer causing gene, Bcl3, in metastatic breast cancer.

"We showed that suppressing this gene reduced the spread of cancer by more than 80%," said Dr Richard Clarkson from Cardiff University's European Cancer Stem Cell Research Institute.

"Our next goal was to then find a way to suppress Bcl3 pharmacologically. Despite great improvements in therapy of early stage breast cancer, the current therapeutic options for patients with late stage metastatic disease are limited.

"There is therefore a clear unmet clinical need to identify new drugs to reverse or at least to slow down disease progression" he added.

Dr Clarkson and his team joined up with researchers Dr Andrea Brancale and Dr Andrew Westwell from the Cardiff University School of Pharmacy and Pharmaceutical Sciences, to develop small chemical inhibitors of the Bcl3 gene.

Computer aided modeling of how the Bcl3 gene functions inside the cell allowed the group to identify a pocket on the surface of Bcl3 essential for its function. By screening a virtual compound library for chemicals that could fit inside this pocket, using state-of-the-art computer software, they identified a drug candidate that potently inhibits Bcl3.

The compound was then trialed on mice with metastatic disease. The resulting effect was that the drug completely inhibited the development of the mice's metastatic tumours.

With financial backing from Tiziana Pharmaceuticals*, work is now underway to progress the compound to clinical trials. The aim is to develop a therapeutic agent capable of blocking metastatic disease in breast cancer and a variety of tumour types.

Tomas Llewelyn Barrett | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Life Sciences:

nachricht Fruit fly studies shed light on adaptability of nerve cells
17.04.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Rare monkey photographed in Congo's newest national park, Ntokou-Pikounda
17.04.2015 | Wildlife Conservation Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>