Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug that restricts blood supply to prostate tumors delays disease progression

09.06.2010
A blood vessel-blocking drug called tasquinimod slowed the rate of disease progression in a clinical trial of 200 prostate cancer patients, according to experts at Johns Hopkins, Roswell Park Cancer Institute and Duke University.

Tasquinimod is a so-called "anti-angiogenesis" drug that squeezes off blood supply to prostate tumors by blocking new blood vessel development. Tumors require these vast networks of blood vessels to supply nutrients.

The multicenter trial at seven institutions, including Johns Hopkins, enrolled prostate cancer patients whose disease had spread to take a once-daily pill for four weeks. At six months, 57 percent of men taking tasquinimod had no disease progression as compared with 33 percent taking a placebo. Overall, the drug added approximately 12 weeks of time that the disease did not worsen (progression-free survival).

The most common side effects included gastrointestinal problems, fatigue and bone pain, and some rare occurrences of heart attack, stroke and deep vein thrombosis.

"Given these results, we feel it is reasonable to move forward with Phase III studies," says Michael Carducci, M.D., professor at the Johns Hopkins Kimmel Cancer Center, who will lead the next phase of an international study of the drug. "After exploring the drug as a single agent, we may study it in combination approaches with other prostate cancer drugs."

Research leading to tasquinimod began in the early 1990s when John Isaacs, Ph.D., professor at the Johns Hopkins Kimmel Cancer Center, found that a drug called linomide, which had been tested in multiple sclerosis, restricted blood supply to prostate tumors. However, the drug's cardiac side effects were too toxic for humans, so Isaacs in collaboration with the pharmaceutical company Active Biotech identified tasquinimod for clinical testing after searching for drugs similar to linomide with the same blood vessel action but with less toxicity.

Isaacs says that tasquinimod works by stopping new blood vessel development around the tumor, but does not make existing vasculature disappear. "The idea for anti-angiogenesis drugs is not to prevent tumors from developing; rather, it is to stabilize disease," says Isaacs, who is conducting additional laboratory studies to identify the drug's precise cellular target.

Funding for the study was provided by Active Biotech, manufacturer of tasquinimod, and the U.S. Department of Defense.

Carducci is a paid consultant to Active Biotech and the terms of this arrangement are being managed in accordance with policies set by the Johns Hopkins University.

Based on abstracts and presentations by Johns Hopkins Kimmel Cancer Center scientists scheduled to present their work at the annual meeting of the American Society of Clinical Oncology (ASCO), June 4-8, in Chicago.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>