Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug-proof zebrafish reveal secrets of addiction

03.08.2009
The effects of amphetamines on gene expression in zebrafish have been uncovered. This new study, published in BioMed Central's open access journal Genome Biology, provides clues to the genetics that underlie susceptibility to addiction by describing the nad zebrafish mutant, which does not feel the rewarding effects of the drugs.

Katharine Webb, from the German Research Center for Environmental Health, Helmholtz Zentrum München, worked with an international team of researchers to carry out the experiments. She said, "Addictive drugs all trigger a sequence of widespread long-lasting consequences on brain physiology, most of which are only partially understood. Because a major step in the development of addiction is the switch from drug use to drug abuse, we aimed to gain insight into the mechanisms triggering the initiation of addictive behaviour".

The team used the mutagenic chemical ENU to generate hundreds of mutant zebrafish. From these, they bred a line that did not respond to amphetamine administration (despite the presence of the drug in the fish's brain) but that appeared to be normal in all other ways. As amphetamine is experienced as pleasurable, amphetamine response was determined by measuring whether fish chose to move to a half of the tank where the drug had been given out.

By comparing these drug-proof nad mutants to fish with a normal response, Webb and her colleagues discovered a set of 139 genes that respond inappropriately to amphetamine in nad mutants, without being altered under normal conditions in either genotype. In addition to genes involved in pathways classically associated with reward, this gene set shows a striking enrichment in transcription factors that are specifically known for their involvement in brain development. Even more interestingly, as the authors demonstrate, several of these genes are expressed in neurogenic domains of the adult fish brain – these are domains where neurons are generated from neural stem cells during adulthood. According to the researchers, " These factors, which are also dramatically down-regulated by amphetamine, can serve as valuable new entry points into studying the link between adult neurogenesis and addiction".

These results identify a new network of coordinated gene regulation that influences the response to amphetamine and may underlie the susceptibility to addiction.

1. Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine
Katharine J Webb, William HJ Norton, Dietrich Trümbach, Annemarie H Meijer, Jovica Ninkovic, Stefanie Topp, Daniel Heck, Carsten Marr, Wolfgang Wurst, Fabian J Theis, Herman P Spaink and Laure Bally-Cuif

Genome Biology (in press)

2. For further information please read the minireview highlighting this work:

Amphetamine recapitulates developmental programs in the zebrafish
Jean Lud Cadet
Genome Biology (in press)
http://genomebiology.com/2009/10/7/231
3. Genome Biology publishes articles from the full spectrum of biology. Subjects covered include any aspect of molecular, cellular, organismal or population biology studied from a genomic perspective, as well as genomics, proteomics, bioinformatics, genomic methods (including structure prediction), computational biology, sequence analysis (including large-scale and cross-genome analyses), comparative biology and evolution.

4. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>