Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drug prevents seizure progression in model of epilepsy

Carnegie Mellon University researchers have identified a new anticonvulsant compound that has the potential to stop the development of epilepsy. The findings are published in the current issue of the journal Epilepsia.
The research discovery builds on previous work identifying a specific molecular target whose increased activity is associated with seizure disorders, a potassium channel known as the BK channel.

"We have found a new anticonvulsant compound that eliminates seizures in a model of epilepsy," said Alison Barth, associate professor of biological sciences at Carnegie Mellon's Mellon College of Science. "The drug works by inhibiting ion channels whose role in epilepsy was only recently discovered. Understanding how these channels work in seizure disorders, and being able to target them with a simple treatment, represents a significant advance in our ability to understand and treat epilepsy."

Epilepsy is a neurological disorder marked by abnormal electrical activity in the brain that leads to recurring seizures. A person who has a first seizure is statistically much more likely to have a second, and with each subsequent seizure, the chance of having another seizure grows. A person is often diagnosed with epilepsy after having two or more seizures that have no other apparent cause.

In prior studies, Barth and colleagues were the first to link BK channels, ion channels that allow electrically charged potassium ions to move out of cells, to sporadic epilepsy. Previous studies had shown that these channels were genetically altered in a few rare individuals who suffer from the disease, but Barth and colleagues demonstrated that seizures themselves could lead to the same alterations in BK channel function.

Potassium ions move through the channels, starting and stopping the electrical impulses that allow neurons to communicate with one another. The Carnegie Mellon researchers found that after a first seizure, BK channel function was markedly enhanced. As a result, the neurons became overly excitable and were firing with more speed, intensity and spontaneity, leading Barth to believe that the abnormal increased activity of the channels might play a role in causing subsequent seizures and the emergence of epilepsy.

In the current study, Barth tested this theory by blocking the ion channels using a BK-channel antagonist called paxilline. Using an experimental model for epilepsy, Barth asked whether paxilline could reduce or prevent experimentally induced seizures, as it could normalize aberrant brain activity induced by previous seizures. Remarkably, Barth and colleagues Jesse Sheehan and Brett Benedetti discovered that the compound was effective at completely blocking subsequent seizures.

"The drug is orally available, and works in the low nanomolar range," said Barth, noting that these characteristics, which mean the drug is effective in low concentrations and can be taken as a pill, make it an especially promising compound for treatment in epilepsy patients. While most anticonvulsants currently used to treat epilepsy work to directly inhibit the activity of neurotransmitters that causes seizures, few compounds interact with specific ion channels, especially potassium channels. The researchers believe that targeting the BK channels and the abnormal brain activity that they induce might one day be used as a way to prevent the progression of seizure disorders over time, thus attacking the root cause of epilepsy.

According to Barth, the next steps will be to further investigate paxilline to see whether it is an effective anticonvulsant treatment for multiple types of seizures. The investigators continue to look at how BK channels are regulated by seizures to better understand the development of epilepsy.

Co-authors of the study include Sheehan and Benedetti, doctoral students in the Department of Biological Sciences and Center for the Neural Basis of Cognition at Carnegie Mellon. The study was funded by the National Institutes of Health, the Milken Family Foundation for Translational Research and the Alfred P. Sloan Foundation.

Jocelyn Duffy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>