Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug prevents seizure progression in model of epilepsy

07.05.2009
Carnegie Mellon University researchers have identified a new anticonvulsant compound that has the potential to stop the development of epilepsy. The findings are published in the current issue of the journal Epilepsia.
The research discovery builds on previous work identifying a specific molecular target whose increased activity is associated with seizure disorders, a potassium channel known as the BK channel.

"We have found a new anticonvulsant compound that eliminates seizures in a model of epilepsy," said Alison Barth, associate professor of biological sciences at Carnegie Mellon's Mellon College of Science. "The drug works by inhibiting ion channels whose role in epilepsy was only recently discovered. Understanding how these channels work in seizure disorders, and being able to target them with a simple treatment, represents a significant advance in our ability to understand and treat epilepsy."

Epilepsy is a neurological disorder marked by abnormal electrical activity in the brain that leads to recurring seizures. A person who has a first seizure is statistically much more likely to have a second, and with each subsequent seizure, the chance of having another seizure grows. A person is often diagnosed with epilepsy after having two or more seizures that have no other apparent cause.

In prior studies, Barth and colleagues were the first to link BK channels, ion channels that allow electrically charged potassium ions to move out of cells, to sporadic epilepsy. Previous studies had shown that these channels were genetically altered in a few rare individuals who suffer from the disease, but Barth and colleagues demonstrated that seizures themselves could lead to the same alterations in BK channel function.

Potassium ions move through the channels, starting and stopping the electrical impulses that allow neurons to communicate with one another. The Carnegie Mellon researchers found that after a first seizure, BK channel function was markedly enhanced. As a result, the neurons became overly excitable and were firing with more speed, intensity and spontaneity, leading Barth to believe that the abnormal increased activity of the channels might play a role in causing subsequent seizures and the emergence of epilepsy.

In the current study, Barth tested this theory by blocking the ion channels using a BK-channel antagonist called paxilline. Using an experimental model for epilepsy, Barth asked whether paxilline could reduce or prevent experimentally induced seizures, as it could normalize aberrant brain activity induced by previous seizures. Remarkably, Barth and colleagues Jesse Sheehan and Brett Benedetti discovered that the compound was effective at completely blocking subsequent seizures.

"The drug is orally available, and works in the low nanomolar range," said Barth, noting that these characteristics, which mean the drug is effective in low concentrations and can be taken as a pill, make it an especially promising compound for treatment in epilepsy patients. While most anticonvulsants currently used to treat epilepsy work to directly inhibit the activity of neurotransmitters that causes seizures, few compounds interact with specific ion channels, especially potassium channels. The researchers believe that targeting the BK channels and the abnormal brain activity that they induce might one day be used as a way to prevent the progression of seizure disorders over time, thus attacking the root cause of epilepsy.

According to Barth, the next steps will be to further investigate paxilline to see whether it is an effective anticonvulsant treatment for multiple types of seizures. The investigators continue to look at how BK channels are regulated by seizures to better understand the development of epilepsy.

Co-authors of the study include Sheehan and Benedetti, doctoral students in the Department of Biological Sciences and Center for the Neural Basis of Cognition at Carnegie Mellon. The study was funded by the National Institutes of Health, the Milken Family Foundation for Translational Research and the Alfred P. Sloan Foundation.

Jocelyn Duffy | EurekAlert!
Further information:
http://www.andrew.cmu.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>