Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug may help overwrite bad memories

31.05.2011
Recalling painful memories while under the influence of the drug metyrapone reduces the brain's ability to re-record the negative emotions associated with them, according to a study published in The Endocrine Society's Journal of Clinical Endocrinology & Metabolism.

The study by a team of University of Montreal researchers at the Centre for Studies on Human Stress of Louis-H. Lafontaine Hospital challenges the theory that memories cannot be modified once they are stored in the brain.

"Metyrapone is a drug that significantly decreases the levels of cortisol, a stress hormone that is involved in memory recall," explained lead author Marie-France Marin. Manipulating cortisol close to the time of forming new memories can decrease the negative emotions that may be associated with them. "The results show that when we decrease stress hormone levels at the time of recall of a negative event, we can impair the memory for this negative event with a long-lasting effect," said Dr. Sonia Lupien, who directed the research.

Thirty-three men participated in the study, which involved learning a story composed of neutral and negative events. Three days later, they were divided into three groups – participants in the first group received a single dose of metyrapone, the second received double, while the third were given placebo. They were then asked to remember the story. Their memory performance was then evaluated again four days later, once the drug had cleared out.. "We found that the men in the group who received two doses of metyrapone were impaired when retrieving the negative events of the story, while they showed no impairment recalling the neutral parts of the story," Marin explained. "We were surprised that the decreased memory of negative information was still present once cortisol levels had returned to normal."

The research offers hope to people suffering from syndromes such as post-traumatic stress disorder. "Our findings may help people deal with traumatic events by offering them the opportunity to 'write-over' the emotional part of their memories during therapy," Marin said. One major hurdle, however, is the fact that metyrapone is no longer commercially produced. Nevertheless, the findings are very promising in terms of future clinical treatments. "Other drugs also decrease cortisol levels, and further studies with these compounds will enable us to gain a better understanding of the brain mechanisms involved in the modulation of negative memories."

About the researchers

Marie-France Marin
Doctoral student
Centre for Studies on Human Stress of Louis-H. Lafontaine Hospital
Fernand-Seguin Research Centre of Louis-H. Lafontaine Hospital
University of Montreal's Department of Physiology
Doctoral scholarship, Canadian Institutes of Health Research (CIHR)
Dr. Sonia Lupien
Director, Centre for Studies on Human Stress of Louis-H. Lafontaine Hospital
Director, Fernand-Seguin Research Centre of Louis-H. Lafontaine Hospital
Full Professor, University of Montreal's Department of Psychiatry
Senior Investigator, CIHR Research Chair on Mental Health in Men and Women.
About the study
The University of Montreal is officially known as Université de Montréal. The study received funding from the Canadian Institutes for Health Research and has been published online in the Journal of Clinical Endocrinology & Metabolism.

Aaron Lohr | EurekAlert!
Further information:
http://www.endo-society.org

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>