Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug development: Clever crystals

20.08.2012
Water plays a key role in the co-crystallization of active pharmaceutical ingredients

There is much more to drug development than simply identifying a potent active pharmaceutical ingredient (API). Scientists must ensure that the API can tolerate the production process, remain stable during storage and distribution, and behave appropriately inside the patient’s body after administration.


Fibrous caffeine crystals as viewed by dark field light microscopy. Points where nucleation occurred are clearly visible; nucleation occurred at the points the fibrous crystals radiate out from. 1.559 ìm per pixel, the entire image covers an area of approximately 11 x 7 mm. © Zephyris

One emerging technique for improving the performance of APIs with non-ideal physicochemical properties is to co-crystallize them with a second compound that modulates their behavior. Srinivasulu Aitipamula and co-workers at the A*STAR Institute of Chemical and Engineering Sciences have now developed a novel route for preparing such co-crystals.

The researchers have discovered that adding water droplets can help to form co-crystals of caffeine, a compound known to act as a central nervous system stimulant and a muscle relaxant. Caffeine is inherently unstable to humidity — a property that can be improved by forming co-crystals with biocompatible compounds such as 4-hydroxybenzoic acid (4HBA). Computer models predict that co-crystals of caffeine and 4HBA in the ratio of 1:1 should form the most stable structure. To date, however, researchers have only been able to produce 2:1 and 1:2 co-crystals.

Aitipamula and his team have now successfully formed 1:1 co-crystals of caffeine and 4HBA, in the form of a monohydrate. By grinding together a 1:1 mixture of the two components along with two drops of water, a crystal structure was formed in which each pair of crystallization partners is partly held together by a water molecule.

According to Aitipamula, the key to water’s ability to produce the 1:1 co-crystal is its capacity to both donate and accept hydrogen bonds — the intermolecular force that holds co-crystals components together. “In the case of the caffeine-4HBA co-crystal hydrate, unused hydrogen bond acceptors and donors are satisfied by forming hydrogen bonds with the water molecule,” he says. Without water, the number of hydrogen bond donors and acceptors is unbalanced, resulting in the preferential formation of the 2:1 and 1:2 crystals instead.

The process also works for other APIs, as the researchers have found. They have generated a 1:1 co-crystal hydrate of 4HBA with piracetam, a drug used to treat memory and balance problems. The results suggest that forming hydrates offers an alternative way to generate co-crystals with particular ratios of constituents, expanding the options for forming pharmaceutical materials.

The researchers are currently focused on developing new co-crystals for APIs and studying their physicochemical properties. “Our primary emphasis is to target APIs that pose problems in pre-formulation and dissolution,” Aitipamula says.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

References:

Aitipamula, S., Chow, P. S. & Tan, R. B. H. Co-crystals of caffeine and piracetam with 4-hydroxybenzoic acid: Unravelling the hidden hydrates of 1:1 co-crystals. CrystEngComm 14, 2381–2385 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>