Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug development: Clever crystals

20.08.2012
Water plays a key role in the co-crystallization of active pharmaceutical ingredients

There is much more to drug development than simply identifying a potent active pharmaceutical ingredient (API). Scientists must ensure that the API can tolerate the production process, remain stable during storage and distribution, and behave appropriately inside the patient’s body after administration.


Fibrous caffeine crystals as viewed by dark field light microscopy. Points where nucleation occurred are clearly visible; nucleation occurred at the points the fibrous crystals radiate out from. 1.559 ìm per pixel, the entire image covers an area of approximately 11 x 7 mm. © Zephyris

One emerging technique for improving the performance of APIs with non-ideal physicochemical properties is to co-crystallize them with a second compound that modulates their behavior. Srinivasulu Aitipamula and co-workers at the A*STAR Institute of Chemical and Engineering Sciences have now developed a novel route for preparing such co-crystals.

The researchers have discovered that adding water droplets can help to form co-crystals of caffeine, a compound known to act as a central nervous system stimulant and a muscle relaxant. Caffeine is inherently unstable to humidity — a property that can be improved by forming co-crystals with biocompatible compounds such as 4-hydroxybenzoic acid (4HBA). Computer models predict that co-crystals of caffeine and 4HBA in the ratio of 1:1 should form the most stable structure. To date, however, researchers have only been able to produce 2:1 and 1:2 co-crystals.

Aitipamula and his team have now successfully formed 1:1 co-crystals of caffeine and 4HBA, in the form of a monohydrate. By grinding together a 1:1 mixture of the two components along with two drops of water, a crystal structure was formed in which each pair of crystallization partners is partly held together by a water molecule.

According to Aitipamula, the key to water’s ability to produce the 1:1 co-crystal is its capacity to both donate and accept hydrogen bonds — the intermolecular force that holds co-crystals components together. “In the case of the caffeine-4HBA co-crystal hydrate, unused hydrogen bond acceptors and donors are satisfied by forming hydrogen bonds with the water molecule,” he says. Without water, the number of hydrogen bond donors and acceptors is unbalanced, resulting in the preferential formation of the 2:1 and 1:2 crystals instead.

The process also works for other APIs, as the researchers have found. They have generated a 1:1 co-crystal hydrate of 4HBA with piracetam, a drug used to treat memory and balance problems. The results suggest that forming hydrates offers an alternative way to generate co-crystals with particular ratios of constituents, expanding the options for forming pharmaceutical materials.

The researchers are currently focused on developing new co-crystals for APIs and studying their physicochemical properties. “Our primary emphasis is to target APIs that pose problems in pre-formulation and dissolution,” Aitipamula says.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

References:

Aitipamula, S., Chow, P. S. & Tan, R. B. H. Co-crystals of caffeine and piracetam with 4-hydroxybenzoic acid: Unravelling the hidden hydrates of 1:1 co-crystals. CrystEngComm 14, 2381–2385 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>