Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New drug design technique could dramatically speed discovery process

Scientists here are taking the trial and error out of drug design by using powerful computers to identify molecular structures that have the highest potential to serve as the basis for new medications.

Most drugs are designed to act on proteins that somehow malfunction in ways that lead to damage and disease in the body. The active ingredient in these medicines is typically a single molecule that can interact with a protein to stop its misbehavior.

Finding such a molecule, however, is not easy. It ideally will be shaped and configured in a way that allows it to bind with a protein on what are known as “hot spots” on the protein surface – and the more hot spots it binds to, the more potential it has to be therapeutic.

To accomplish this, many drug molecules are composed of units called fragments that are linked through chemical bonds. An ideal drug molecule for a specific protein disease target should be a combination of fragments that fit into each hot spot in the best possible way.

Previous methods to identify these molecules have emphasized searching for fragments that can attach to one hot spot at a time. Finding structures that attach to all of the required hot spots is tedious, time-consuming and error-prone.

Ohio State University researchers, however, have used computer simulations to identify molecular fragments that attach simultaneously to multiple hot spots on proteins. The technique is a new way to tackle the fragment-based design strategy.

“We use the massive computing power available to us to find only the good fragments and link them together,” said Chenglong Li, assistant professor of medicinal chemistry and pharmacognosy at Ohio State and senior author of a study detailing this work.

Li likens the molecular fragments to birds flying around in space, looking for food on the landscape: the protein surface. With this technique, he creates computer programs that allow these birds – or molecular fragments – to find the prime location for food, or the protein hot spots. The algorithm is originated from a computation technique called particle swarm optimization.

“Each bird can see the landscape individually, and it can sense other birds that inform each other about where the foods are,” Li said. “That’s how this method works. Each fragment is like a bird finding food on the landscape. And that’s how we place the fragments and obtain the best fragment combination for specific protein binding sites.”

Li verified that the technique works by comparing a molecular structure he designed to the molecular base of an existing cancer medication that targets a widely understood protein.

“My method reconstructed what pharmaceutical companies have already done,” he said. “In the future, we’ll apply this technique to protein targets for diseases that remain challenging to treat with currently available therapies.”

The research appears online and is scheduled for later print publication in the Journal of Computational Chemistry.

Li said this new computer modeling method of drug design has the potential to complement and increase efficiency of more time-consuming methods like nuclear magnetic resonance and X-ray crystallography. For example, he said, X-ray fragment crystallography can be hard to interpret because of “noise” created by fragments that don’t bind well to proteins.

With this new computer simulation technique, called multiple ligand simultaneous docking, Li instructs molecular fragments to interact with each other before the actual experimental trials, removing weak and “noisy” fragments so only the promising ones are left.

“They sense each other’s presence through molecular force. They suppress the noise and go exactly where they are supposed to go,” he said. “You find the right fragment in the right place, and it’s like fitting the right piece into a jigsaw puzzle.”

Before he can begin designing a molecule, Li must obtain information about a specific protein target, especially the protein structures. These details come from collaborators who have already mapped a target protein’s surface to pinpoint where the hot spots are, for example, through directed mutations or from databases.

Li starts the design process with molecular fragments that come from thousands of existing drugs already on the market. He creates a computer image of those molecules, and then chops them up into tiny pieces and creates a library of substructures to work with – typically more than a thousand possibilities.

That is where computational power comes into play.

“To search all of the possibilities of these molecular combinations and narrow them down, we need a massive computer,” he said. Li uses two clusters of multiple computers, one in Ohio State’s College of Pharmacy and the other in the Ohio Supercomputer Center, to complete the simulations.

The results of this computation create an initial molecular template that can serve as a blueprint for later stages of the drug discovery process. Medicinal chemists can assemble synthetic molecules based on these computer models, which can then be tested for their effectiveness against a given disease condition in a variety of research environments.

Li already has used this technique to identify molecules that bind to known cancer-causing proteins. He said the method can be applied to any protein that is a suspected cause of diseases of any kind, not just cancer.

This work was supported by the National Institutes of Health and faculty startup funds from the College of Pharmacy at Ohio State.

Huameng Li of Ohio State’s Biophysics Graduate Program is a co-author of the study.

Contact: Chenglong Li, (614) 247-8786;
Written by Emily Caldwell, (614) 292-8310;

Chenglong Li | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>